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Foreword

It started with image processing in the sixties. Back then, it took ages to
digitize a Landsat image and then process it with a mainframe computer. Pro-
cessing was inspired on the achievements of signal processing and was still
very much oriented towards programming.

In the seventies, image analysis spun off combining image measurement
with statistical pattern recognition. Slowly, computational methods detached
themselves from the sensor and the goal to become more generally applicable.

In the eighties, model-driven computer vision originated when artificial in-
telligence and geometric modelling came together with image analysis compo-
nents. The emphasis was on precise analysis with little or no interaction, still
very much an art evaluated by visual appeal. The main bottleneck was in the
amount of data using an average of 5 to 50 pictures to illustrate the point.

At the beginning of the nineties, vision became available to many with the
advent of sufficiently fast PCs. The Internet revealed the interest of the gen-
eral public im images, eventually introducing content-based image retrieval.
Combining independent (informal) archives, as the web is, urges for interac-
tive evaluation of approximate results and hence weak algorithms and their
combination in weak classifiers.

In the new century, the last analog bastion was taken. In a few years, sen-
sors have become all digital. Archives will soon follow. As a consequence
of this change in the basic conditions datasets will overflow. Computer vision
will spin off a new branch to be called something like archive-based or se-
mantic vision including a role for formal knowledge description in an ontology
equipped with detectors. An alternative view is experience-based or cognitive
vision. This is mostly a data-driven view on vision and includes the elementary
laws of image formation.

This book comes right on time. The general trend is easy to see. The meth-
ods of computation went from dedicated to one specific task to more generally
applicable building blocks, from detailed attention to one aspect like filtering
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to a broad variety of topics, from a detailed model design evaluated against a
few data to abstract rules tuned to a robust application.

From the source to consumption, images are now all digital. Very soon,
archives will be overflowing. This is slightly worrying as it will raise the level
of expectations about the accessibility of the pictorial content to a level com-
patible with what humans can achieve.

There is only one realistic chance to respond. From the trend displayed
above, it is best to identify basic laws and then to learn the specifics of the
model from a larger dataset. Rather than excluding interaction in the evaluation
of the result, it is better to perceive interaction as a valuable source of instant
learning for the algorithm.

This book builds on that insight: that the key element in the current rev-
olution is the use of machine learning to capture the variations in visual ap-
pearance, rather than having the designer of the model accomplish this. As
a bonus, models learned from large datasets are likely to be more robust and
more realistic than the brittle all-design models.

This book recognizes that machine learning for computer vision is distinc-
tively different from plain machine learning. Loads of data, spatial coherence,
and the large variety of appearances, make computer vision a special challenge
for the machine learning algorithms. Hence, the book does not waste itself on
the complete spectrum of machine learning algorithms. Rather, this book is
focussed on machine learning for pictures.

It is amazing so early in a new field that a book appears which connects
theory to algorithms and through them to convincing applications.

The authors met one another at Urbana-Champaign and then dispersed over
the world, apart from Thomas Huang who has been there forever. This book
will surely be with us for quite some time to come.

Arnold Smeulders
University of Amsterdam
The Netherlands
October, 2004



Preface

The goal of computer vision research is to provide computers with human-
like perception capabilities so that they can sense the environment, understand
the sensed data, take appropriate actions, and learn from this experience in
order to enhance future performance. The field has evolved from the applica-
tion of classical pattern recognition and image processing methods to advanced
techniques in image understanding like model-based and knowledge-based vi-
sion.

In recent years, there has been an increased demand for computer vision sys-
tems to address “real-world” problems. However, much of our current models
and methodologies do not seem to scale out of limited “toy” domains. There-
fore, the current state-of-the-art in computer vision needs significant advance-
ments to deal with real-world applications, such as navigation, target recogni-
tion, manufacturing, photo interpretation, remote sensing, etc. It is widely un-
derstood that many of these applications require vision algorithms and systems
to work under partial occlusion, possibly under high clutter, low contrast, and
changing environmental conditions. This requires that the vision techniques
should be robust and flexible to optimize performance in a given scenario.

The field of machine learning is driven by the idea that computer algorithms
and systems can improve their own performance with time. Machine learning
has evolved from the relatively “knowledge-free” general purpose learning sys-
tem, the “perceptron” [Rosenblatt, 1958], and decision-theoretic approaches
for learning [Blockeel and De Raedt, 1998], to symbolic learning of high-level
knowledge [Michalski et al., 1986], artificial neural networks [Rowley et al.,
1998a], and genetic algorithms [DeJong, 1988]. With the recent advances in
hardware and software, a variety of practical applications of the machine learn-
ing research is emerging [Segre, 1992].

Vision provides interesting and challenging problems and a rich environ-
ment to advance the state-of-the art in machine learning. Machine learning
technology has a strong potential to contribute to the development of flexible
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and robust vision algorithms, thus improving the performance of practical vi-
sion systems. Learning-based vision systems are expected to provide a higher
level of competence and greater generality. Learning may allow us to use the
experience gained in creating a vision system for one application domain to
a vision system for another domain by developing systems that acquire and
maintain knowledge. We claim that learning represents the next challenging
frontier for computer vision research.

More specifically, machine learning offers effective methods for computer
vision for automating the model/concept acquisition and updating processes,
adapting task parameters and representations, and using experience for gener-
ating, verifying, and modifying hypotheses. Expanding this list of computer
vision problems, we find that some of the applications of machine learning
in computer vision are: segmentation and feature extraction; learning rules,
relations, features, discriminant functions, and evaluation strategies; learning
and refining visual models; indexing and recognition strategies; integration of
vision modules and task-level learning; learning shape representation and sur-
face reconstruction strategies; self-organizing algorithms for pattern learning;
biologically motivated modeling of vision systems that learn; and parameter
adaptation, and self-calibration of vision systems. As an eventual goal, ma-
chine learning may provide the necessary tools for synthesizing vision algo-
rithms starting from adaptation of control parameters of vision algorithms and
systems.

The goal of this book is to address the use of several important machine
learning techniques into computer vision applications. An innovative combi-
nation of computer vision and machine learning techniques has the promise
of advancing the field of computer vision, which will contribute to better un-
derstanding of complex real-world applications. There is another benefit of
incorporating a learning paradigm in the computational vision framework. To
mature the laboratory-grown vision systems into real-world working systems,
it is necessary to evaluate the performance characteristics of these systems us-
ing a variety of real, calibrated data. Learning offers this evaluation tool, since
no learning can take place without appropriate evaluation of the results.

Generally, learning requires large amounts of data and fast computational
resources for its practical use. However, all learning does not have to be on-
line. Some of the learning can be done off-line, e.g., optimizing parameters,
features, and sensors during training to improve performance. Depending upon
the domain of application, the large number of training samples needed for
inductive learning techniques may not be available. Thus, learning techniques
should be able to work with varying amounts of a priori knowledge and data.

The effective usage of machine learning technology in real-world computer
vision problems requires understanding the domain of application, abstraction
of a learning problem from a given computer vision task, and the selection
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of appropriate representations for the learnable (input) and learned (internal)
entities of the system. To succeed in selecting the most appropriate machine
learning technique(s) for the given computer vision task, an adequate under-
standing of the different machine learning paradigms is necessary.

A learning system has to clearly demonstrate and answer the questions like
what is being learned, how it is learned, what data is used to learn, how to rep-
resent what has been learned, how well and how efficient is the learning taking
place and what are the evaluation criteria for the task at hand. Experimen-
tal details are essential for demonstrating the learning behavior of algorithms
and systems. These experiments need to include scientific experimental design
methodology for training/testing, parametric studies, and measures of perfor-
mance improvement with experience. Experiments that exihibit scalability of
learning-based vision systems are also very important.

In this book, we address all these important aspects. In each of the chapters,
we show how the literature has introduced the techniques into the particular
topic area, we present the background theory, discuss comparative experiments
made by us, and conclude with comments and recommendations.
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Chapter 1

INTRODUCTION

Computer vision has grown rapidly within the past decade, producing tools
that enable the understanding of visual information, especially for scenes with
no accompanying structural, administrative, or descriptive text information.
The Internet, more specifically the Web, has become a common channel for
the transmission of graphical information, thus moving visual information re-
trieval rapidly from stand-alone workstations and databases into a networked
environment.

Practicality has begun to dictate that the indexing of huge collections of im-
ages by hand is a task that is both labor intensive and expensive - in many
cases more than can be afforded to provide some method of intellectual ac-
cess to digital image collections. In the world of text retrieval, text “speaks
for itself” whereas image analysis requires a combination of high-level con-
cept creation as well as the processing and interpretation of inherent visual
features. In the area of intellectual access to visual information, the interplay
between human and machine image indexing methods has begun to influence
the development of computer vision systems. Research and application by
the image understanding (IU) community suggests that the most fruitful ap-
proaches to IU involve analysis and learning of the type of information being
sought, the domain in which it will be used, and systematic testing to identify
optimal methods.

The goal of computer vision research is to provide computers with human-
like perception capabilities so that they can sense the environment, understand
the sensed data, take appropriate actions, and learn from this experience in or-
der to enhance future performance. The vision field has evolved from the appli-
cation of classical pattern recognition and image processing techniques to ad-
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vanced applications of image understanding, model-based vision, knowledge-
based vision, and systems that exhibit learning capability. The ability to reason
and the ability to learn are the two major capabilities associated with these sys-
tems. In recent years, theoretical and practical advances are being made in the
field of computer vision and pattern recognition by new techniques and pro-
cesses of learning, representation, and adaptation. It is probably fair to claim,
however, that learning represents the next challenging frontier for computer
vision.

1. Research Issues on Learning in Computer Vision
In recent years, there has been a surge of interest in developing machine

learning techniques for computer vision based applications. The interest de-
rives from both commercial projects to create working products from com-
puter vision techniques and from a general trend in the computer vision field
to incorporate machine learning techniques.

Learning is one of the current frontiers for computer vision research and has
been receiving increased attention in recent years. Machine learning technol-
ogy has strong potential to contribute to:

the development of flexible and robust vision algorithms that will improve
the performance of practical vision systems with a higher level of compe-
tence and greater generality, and

the development of architectures that will speed up system development
time and provide better performance.

The goal of improving the performance of computer vision systems has
brought new challenges to the field of machine learning, for example, learning
from structured descriptions, partial information, incremental learning, focus-
ing attention or learning regions of interests (ROI), learning with many classes,
etc. Solving problems in visual domains will result in the development of new,
more robust machine learning algorithms that will be able to work in more
realistic settings.

From the standpoint of computer vision systems, machine learning can offer
effective methods for automating the acquisition of visual models, adapting
task parameters and representation, transforming signals to symbols, building
trainable image processing systems, focusing attention on target object, and
learning when to apply what algorithm in a vision system.

From the standpoint of machine learning systems, computer vision can pro-
vide interesting and challenging problems. As examples consider the follow-
ing: learning models rather than handcrafting them, learning to transfer experi-
ence gained in one application domain to another domain, learning from large
sets of images with no annotation, designing evaluation criteria for the quality
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of learning processes in computer vision systems. Many studies in machine
learning assume that a careful trainer provides internal representations of the
observed environment, thus paying little attention to the problems of percep-
tion. Unfortunately, this assumption leads to the development of brittle systems
with noisy, excessively detailed, or quite coarse descriptions of the perceived
environment.

Esposito and Malerba [Esposito and Malerba, 2001] listed some of the im-
portant research issues that have to be dealt with in order to develop successful
applications:

Can we learn the models used by a computer vision system rather than
handcrafting them?

In many computer vision applications, handcrafting the visual model of an
object is neither easy nor practical. For instance, humans can detect and
identify faces in a scene with little or no effort. This skill is quite robust,
despite large changes in the visual stimulus. Nevertheless, providing com-
puter vision systems with models of facial landmarks or facial expressions
is very difficult [Cohen et al., 2003b]. Even when models have been hand-
crafted, as in the case of page layout descriptions used by some document
image processing systems [Nagy et al., 1992], it has been observed that they
limit the use of the system to a specific class of images, which is subject to
change in a relatively short time.

How is machine learning used in computer vision systems?

Machine learning algorithms can be applied in at least two different ways
in computer vision systems:

– to improve perception of the surrounding environment, that is, to im-
prove the transformation of sensed signals into internal representations,
and

– to bridge the gap between the internal representations of the environ-
ment and the representation of the knowledge needed by the system to
perform its task.

A possible explanation of the marginal attention given to learning internal
representations of the perceived environment is that feature extraction has
received very little attention in the machine learning community, because it
has been considered application-dependent and research on this issue is not
of general interest. The identification of required data and domain knowl-
edge requires the collaboration with a domain expert and is an important
step of the process of applying machine learning to real-world problems.
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Only recently, the related issues of feature selection and, more generally,
data preprocessing have been more systematically investigated in machine
learning. Data preprocessing is still considered a step of the knowledge
discovery process and is confined to data cleaning, simple data transforma-
tions (e.g., summarization), and validation. On the contrary, many studies
in computer vision and pattern recognition focused on the problems of fea-
ture extraction and selection. Hough transform, FFT, and textural features,
just to mention some, are all examples of features widely applied in image
classification and scene understanding tasks. Their properties have been
well investigated and available tools make their use simple and efficient.

How do we represent visual information?

In many computer vision applications, feature vectors are used to represent
the perceived environment. However, relational descriptions are deemed
to be of crucial importance in high-level vision. Since relations cannot be
represented by feature vectors, pattern recognition researchers use graphs
to capture the structure of both objects and scenes, while people working
in the field of machine learning prefer to use first-order logic formalisms.
By mapping one formalism into another, it is possible to find some simi-
larities between research done in pattern recognition and machine learning.
An example is the spatio-temporal decision tree proposed by Bischof and
Caelli [Bischof and Caelli, 2001], which can be related to logical decision
trees induced by some general-purpose inductive learning systems [Block-
eel and De Raedt, 1998].

What machine learning paradigms and strategies are appropriate to the
computer vision domain?

Inductive learning, both supervised and unsupervised, emerges as the most
important learning strategy. There are several important paradigms that are
being used: conceptual (decision trees, graph-induction), statistical (sup-
port vector machines), and neural networks (Kohonen maps and similar
auto-organizing systems). Another emerging paradigm, which is described
in detail in this book, is the use of probabilistic models in general and prob-
abilistic graphical models in particular.

What are the criteria for evaluating the quality of the learning processes in
computer vision systems?

In benchmarking computer vision systems, estimates of the predictive ac-
curacy, recall, and precision [Huijsman and Sebe, 2004] are considered the
main parameters to evaluate the success of a learning algorithm. How-
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ever, the comprehensibility of learned models is also deemed an important
criterion, especially when domain experts have strong expectations on the
properties of visual models or when understanding of system failures is im-
portant. Comprehensibility is needed by the expert to easily and reliably
verify the inductive assertions and relate them to their own domain knowl-
edge. When comprehensibility is an important issue, the conceptual learn-
ing paradigm is usually preferred, since it is based on the comprehensibility
postulate stated by Michalski [Michalski, 1983]:

The results of computer induction should be symbolic descrip-
tions of given entities, semantically and structurally similar to those
a human expert might produce observing the same entities. Com-
ponents of these descriptions should be comprehensible as single
“chunks” of information, directly interpretable in natural language,
and should relate quantitative and qualitative concepts in an inte-
grated fashion.

When is it useful to adopt several representations of the perceived environ-
ment with different levels of abstraction?

In complex real-world applications, multi-representations of the perceived
environment prove very useful. For instance, a low resolution document
image is suitable for the efficient separation of text from graphics, while a
finer resolution is required for the subsequent step of interpreting the sym-
bols in a text block (OCR). Analogously, the representation of an aerial
view of a cultivated area by means of a vector of textural features can be
appropriate to recognize the type of vegetation, but it is too coarse for the
recognition of a particular geomorphology. By applying abstraction prin-
ciples in computer programming, software engineers have managed to de-
velop complex software systems. Similarly, the systematic application of
abstraction principles in knowledge representation is the keystone for a long
term solution to many problems encountered in computer vision tasks.

How can mutual dependency of visual concepts be dealt with?

In scene labelling problems, image segments have to be associated with a
class name or a label, the number of distinct labels depending on the dif-
ferent types of objects allowed in the perceived world. Typically, image
segments cannot be labelled independently of each other, since the inter-
pretation of a part of a scene depends on the understanding of the whole
scene (holistic view). Context-dependent labelling rules will take such con-
cept dependencies into account, so as to guarantee that the final result is
globally (and not only locally) consistent [Haralick and Shapiro, 1979].
Learning context-dependent labelling rules is another research issue, since
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most learning algorithms rely on the independence assumption, according
to which the solution to a multiclass or multiple concept learning problem
is simply the sum of independent solutions to single class or single concept
learning problems.

Obviously, the above list cannot be considered complete. Other equally
relevant research issues might be proposed, such as the development of noise-
tolerant learning techniques, the effective use of large sets of unlabeled images
and the identification of suitable criteria for starting/stopping the learning pro-
cess and/or revising acquired visual models.

2. Overview of the Book
In general, the study of machine learning and computer vision can be di-

vided into three broad categories: Theory leading to Algorithms and Applica-
tions built on top of theory and algorithms. In this framework, the applications
should form the basis of the theoretical research leading to interesting algo-
rithms. As a consequence, the book was divided into three parts. The first part
develops the theoretical understanding of the concepts that are being used in
developing algorithms in the second part. The third part focuses on the anal-
ysis of computer vision and human-computer interaction applications that use
the algorithms and the theory presented in the first parts.

The theoretical results in this book originate from different practical prob-
lems encountered when using machine learning in general, and probabilistic
models in particular, to computer vision and multimedia problems. The first
set of questions arise from the high dimensionality of models in computer vi-
sion and multimedia. For example, integration of audio and visual informa-
tion plays a critical role in multimedia analysis. Different media streams (e.g.,
audio, video, and text, etc.) may carry information about the task being per-
formed and recent results [Brand et al., 1997; Chen and Rao, 1998; Garg et al.,
2000b] have shown that improved performance can be obtained by combining
information from different sources compared with the situation when a single
modality is considered. At times, different streams may carry similar informa-
tion and in that case, one attempts to use the redundancy to improve the perfor-
mance of the desired task by cancelling the noise. At other times, two streams
may carry complimentary information and in that case the system must make
use of the information carried in both channels to carry out the task. However,
the merits of using multiple streams is overshadowed by the formidable task of
learning in high dimensional which is invariably the case in multi-modal infor-
mation processing. Although, the existing theory supports the task of learning
in high dimensional spaces, the data and model complexity requirements posed
are typically not met by the real life systems. Under such scenario, the existing
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results in learning theory falls short of giving any meaningful guarantees for
the learned classifiers. This raises a number of interesting questions:

Can we analyze the learning theory for more practical scenarios?

Can the results of such analysis be used to develop better algorithms?

Another set of questions arise from the practical problem of data availabil-
ity in computer vision, mainly labeled data. In this respect, there are three
main paradigms for learning from training data. The first is known as super-
vised learning, in which all the training data are labeled, i.e., a datum contains
both the values of the attributes and the labeling of the attributes to one of
the classes. The labeling of the training data is usually done by an external
mechanism (usually humans) and thus the name supervised. The second is
known as unsupervised learning in which each datum contains the values of
the attributes but does not contain the label. Unsupervised learning tries to find
regularities in the unlabeled training data (such as different clusters under some
metric space), infer the class labels and sometimes even the number of classes.
The third kind is semi-supervised learning in which some of the data is labeled
and some unlabeled. In this book, we are more interested in the latter.

Semi-supervised learning is motivated from the fact that in many computer
vision (and other real world) problems, obtaining unlabeled data is relatively
easy (e.g., collecting images of faces and non-faces), while labeling is difficult,
expensive, and/or labor intensive. Thus, in many problems, it is very desirable
to have learning algorithms that are able to incorporate a large number of un-
labeled data with a small number of labeled data when learning classifiers.

Some of the questions raised in semi-supervised learning of classifiers are:

Is it feasible to use unlabeled data in the learning process?

Is the classification performance of the learned classifier guaranteed to im-
prove when adding the unlabeled data to the labeled data?

What is the value of unlabeled data?

The goal of the book is to address all the challenging questions posed so
far. We believe that a detailed analysis of the way machine learning theory can
be applied through algorithms to real-world applications is very important and
extremely relevant to the scientific community.

Chapters 2, 3, and 4 provide the theoretical answers to the questions posed
above. Chapter 2 introduces the basics of probabilistic classifiers. We argue
that there are two main factors contributing to the error of a classifier. Because
of the inherent nature of the data, there is an upper limit on the performance
of any classifier and this is typically referred to as Bayes optimal error. We
start by analyzing the relationship between the Bayes optimal performance of
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a classifier and the conditional entropy of the data. The mismatch between
the true underlying model (one that generated the data) and the model used
for classification contributes to the second factor of error. In this chapter, we
develop bounds on the classification error under the hypothesis testing frame-
work when there is a mismatch in the distribution used with respect to the true
distribution. Our bounds show that the classification error is closely related to
the conditional entropy of the distribution. The additional penalty, because of
the mismatched distribution, is a function of the Kullback-Leibler distance be-
tween the true and the mismatched distribution. Once these bounds are devel-
oped, the next logical step is to see how often the error caused by the mismatch
between distributions is large. Our average case analysis for the independence
assumptions leads to results that justify the success of the conditional inde-
pendence assumption (e.g., in naive Bayes architecture). We show that in most
cases, almost all distributions are very close to the distribution assuming condi-
tional independence. More formally, we show that the number of distributions
for which the additional penalty term is large goes down exponentially fast.

Roth [Roth, 1998] has shown that the probabilistic classifiers can be always
mapped to linear classifiers and as such, one can analyze the performance of
these under the probably approximately correct (PAC) or Vapnik-Chervonenkis
(VC)-dimension framework. This viewpoint is important as it allows one to
directly study the classification performance by developing the relations be-
tween the performance on the training data and the expected performance on
the future unseen data. In Chapter 3, we build on these results of Roth [Roth,
1998]. It turns out that although the existing theory argues that one needs large
amounts of data to do the learning, we observe that in practice a good gen-
eralization is achieved with a much small number of examples. The existing
VC-dimension based bounds (being the worst case bounds) are too loose and
we need to make use of properties of the observed data leading to data depen-
dent bounds. Our observation, that in practice, classification is achieved with
good margin, motivates us to develop bounds based on margin distribution.
We develop a classification version of the Random projection theorem [John-
son and Lindenstrauss, 1984] and use it to develop data dependent bounds. Our
results show that in most problems of practical interest, data actually reside in
a low dimensional space. Comparison with existing bounds on real datasets
shows that our bounds are tighter than existing bounds and in most cases less
than 0.5.

The next chapter (Chapter 4) provides a unified framework of probabilistic
classifiers learned using maximum likelihood estimation. In a nutshell, we dis-
cuss what type of probabilistic classifiers are suited for using unlabeled data
in a systematic way with the maximum likelihood learning, namely classifiers
known as generative. We discuss the conditions under which the assertion
that unlabeled data are always profitable when learning classifiers, made in
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the existing literature, is valid, namely when the assumed probabilistic model
matches reality. We also show, both analytically and experimentally, that unla-
beled data can be detrimental to the classification performance when the condi-
tions are violated. Here we use the term ‘reality’ to mean that there exists some
true probability distribution that generates data, the same one for both labeled
and unlabeled data. The terms are more rigourously defined in Chapter 4.

The theoretical analysis although interesting in itself gets really attractive if
it can be put to use in practical problems. Chapters 5 and 6 build on the results
developed in Chapters 2 and 3, respectively. In Chapter 5, we use the results
of Chapter 2 to develop a new algorithm for learning HMMs. In Chapter 2, we
show that conditional entropy is inversely related to classification performance.
Building on this idea, we argue that when HMMs are used for classification,
instead of learning parameters by only maximizing the likelihood, one should
also attempt to minimize the conditional entropy between the query (hidden)
and the observed variables. This leads to a new algorithm for learning HMMs
- MMIHMM. Our results on both synthetic and real data demonstrate the su-
periority of this new algorithm over the standard ML learning of HMMs.

In Chapter 3, a new, data-dependent, complexity measure for learning – pro-
jection profile – is introduced and is used to develop improved generalization
bounds. In Chapter 6, we extend this result by developing a new learning algo-
rithm for linear classifiers. The complexity measure – projection profile – is a
function of the margin distribution (the distribution of the distance of instances
from a separating hyperplane). We argue that instead of maximizing the mar-
gin, one should attempt to directly minimize this term which actually depends
on the margin distribution. Experimental results on some real world problems
(face detection and context sensitive spelling correction) and on several UCI
data sets show that this new algorithm is superior (in terms of classification
performance) over Boosting and SVM.

Chapter 7 provides a discussion of the implication of the analysis of semi-
supervised learning (Chapter 4) when learning Bayesian network classifiers,
suggesting and comparing different approaches that can be taken to utilize pos-
itively unlabeled data. Bayesian networks are directed acyclic graph models
that represent joint probability distributions of a set of variables. The graphs
consist of nodes (vertices in the graph) which represent the random variables
and directed edges between the nodes which represent probabilistic dependen-
cies between the variables and the casual relationship between the two con-
nected nodes. With each node there is an associated probability mass function
when the variable is discrete, or probability distribution function, when the
variable is continuous. In classification, one of the nodes in the graph is the
class variable while the rest are the attributes. One of the main advantages of
Bayesian networks is the ability to handle missing data, thus it is possible to
systematically handle unlabeled data when learning the Bayesian network. The
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structure of a Bayesian network is the graph structure of the network. We show
that learning the graph structure of the Bayesian network is key when learn-
ing with unlabeled data. Motivated by this observation, we review the existing
structure learning approaches and point out to their potential disadvantages
when learning classifiers. We describe a structure learning algorithm, driven
by classification accuracy and provide empirical evidence of the algorithm’s
success.

Chapter 8 deals with automatic recognition of high level human behavior.
In particular, we focus on the office scenario and attempt to build a system
that can decode the human activities (phone conversation, face-to-face conver-((
sation, presentation mode, other activity, nobody around, and distant conver-
sation). Although there has been some work in the area of behavioral anal-
ysis, this is probably the first system that does the automatic recognition of
human activities in real time from low-level sensory inputs. We make use of
probabilistic models for this task. Hidden Markov models (HMMs) have been
successfully applied for the task of analyzing temporal data (e.g. speech). Al-
though very powerful, HMMs are not very successful in capturing the long
term relationships and modeling concepts lasting over long periods of time.
One can always increase the number of hidden states but then the complexity
of decoding and the amount of data required to learn increases many fold. In
our work, to solve this problem, we propose the use of layered (a type of hier-
archical) HMMs (LHMM), which can be viewed as a special case of Stacked
Generalization [Wolpert, 1992]. At each level of the hierarchy, HMMs are
used as classifiers to do the inference. The inferential output of these HMMs
forms the input to the next level of the hierarchy. As our results show, this new
architecture has a number of advantages over the standard HMMs. It allows
one to capture events at different level of abstraction and at the same time is
capturing long term dependencies which are critical in the modeling of higher
level concepts (human activities). Furthermore, this architecture provides ro-
bustness to noise and generalizes well to different settings. Comparison with
standard HMM shows that this model has superior performance in modeling
the behavioral concepts.

The other challenging problem related to multimedia deals with automatic
analysis/annotation of videos. This problem forms the topic of Chapter 9. Al-
though similar in spirit to the problem of human activity recognition, this prob-
lem gets challenging because of the limited number of modalities (audio and
vision) and the correlation between them being the key in event identification.
In this chapter, we present a new algorithm for detecting events in videos,
which combines the features with temporal support from multiple modalities.
This algorithm is based on a new framework “Duration dependent input/output
Markov models (DDIOMM)”. Essentially DDIOMM is a time varying Markov
model (state transition matrix is a function of the inputs at any given time) and
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the state transition probabilities are modified to explicitly take into account the
non-exponential nature of the durations of various events being modeled. Two
main features of this model are (a) the ability to account for non-exponential
duration and (b) the ability to map discrete state input sequences to decision
sequences. The standard algorithms modeling the video-events use HMMs
which model the duration of events as an exponentially decaying distribution.
However, we argue that the duration is an important characteristic of each event
and we demonstrate it by the improved performance over standard HMMs in
solving real world problems. The model is tested on the audio-visual event ex-
plosion. Using a set of hand-labeled video data, we compare the performance
of our model with and without the explicit model for duration. We also com-
pare the performance of the proposed model with the traditional HMM and
observe an improvement in detection performance.

The algorithms LHMM and DDIOMM presented in Chapters 8 and 9, re-
spectively, have their origins in HMM and are motivated by the vast literature
on probabilistic models and some psychological studies arguing that human
behavior does have a hierarchical structure [Zacks and Tversky, 2001]. How-
ever, the problem lies in the fact that we are using these probabilistic models
for classification and not purely for inferencing (the performance is measured
with respect to the 0−1 loss function). Although one can use arguments related
to Bayes optimality, these arguments fall apart in the case of mismatched dis-
tributions (i.e. when the true distribution is different from the used one). This
mismatch may arise because of the small number of training samples used for
learning, assumptions made to simplify the inference procedure (e.g. a num-
ber of conditional independence assumptions are made in Bayesian networks)
or may be just because of the lack of information about the true model. Fol-
lowing the arguments of Roth [Roth, 1999], one can analyze these algorithms
both from the perspective of probabilistic classifiers and from the perspective
of statistical learning theory. We apply these algorithms to two distinct but re-
lated applications which require machine learning techniques for multimodal
information fusion: office activity recognition and multimodal event detection.

Chapters 10 and 11 demonstrate the theory and algorithms of semi-
supervised learning (Chapters 4 and 7) to two classification tasks related to hu-
man computer intelligent interaction. The first is facial expression recognition
from video sequences using non-rigid face tracking results as the attributes.
We show that Bayesian networks can be used as classifiers to recognize facial
expressions with good accuracy when the structure of the network is estimated
from data. We also describe a real-time facial expression recognition system
which is based on this analysis. The second application is frontal face de-
tection from images under various illuminations. We describe the task and
show that learning Bayesian network classifiers for detecting faces using our
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structure learning algorithm yields improved classification results, both in the
supervised setting and in the semi-supervised setting.

3. Contributions
Original contributions presented in this book span the areas of learning ar-

chitectures for multimodal human computer interaction, theoretical machine
learning, and algorithms in the area of machine learning. In particular, some
key issues addressed in this book are:

Theory

Analysis of probabilistic classifiers leading to developing relationship be-
tween the Bayes optimal error and the conditional entropy of the distribu-
tion.

Bounds on the misclassification error under 0 − 1 loss function are devel-
oped for probabilistic classifiers under hypothesis testing framework when
there is a mismatch between the true distribution and the learned distribu-
tion.

Average case analysis of the space of probability distributions. Results ob-
tained show that almost all distributions in the space of probability distri-
butions are close to the distribution that assumes conditional independence
between the features given the class label.

Data dependent bounds are developed for linear classifiers that depend on
the margin distribution of the data with respect to the learned classifier.

An extensive discussion of using labeled and unlabeled data for learning
probabilistic classifiers. We discuss the types of probabilistic classifiers
that are suited for using unlabeled data in learning and we investigate the
conditions under which the assertion that unlabeled data are always prof-
itable when learning classifiers is valid.

Algorithms

A new learning algorithm MMIHMM (Maximum mutual information
HMM) for hidden Markov models is proposed when HMMs are used for
classification with states as hidden variables.

A novel learning algorithm - Margin Distribution optimization algorithm is
introduced for learning linear classifiers.

New algorithms for learning the structure of Bayesian Networks to be used
in semi-supervised learning.
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Applications

A novel architecture for human activity recognition - Layered HMM - is
proposed. This architecture allows one to model activities by combining
heterogeneous sources and analyzing activities at different levels of tem-
poral abstraction. Empirically, this architecture is observed to be robust to
environmental noise and provides good generalization capabilities in dif-
ferent settings.

A new architecture based on HMMs is proposed for detecting events in
videos. Multimodal events are characterized by the correlation in different
media streams and their specific durations. This is captured by the new
architecture Duration density Hidden Markov Model proposed in the book.

A Bayesian Networks framework for recognizing facial expressions from
video sequences using labeled and unlabeled data is introduced. We also
present a real-time facial expression recognition system.

An architecture for frontal face detection from images under various illu-
minations is presented. We show that learning Bayesian Networks classi-
fiers for detecting faces using our structure learning algorithm yields im-
proved classification results both in the supervised setting and in the semi-
supervised setting.

This book concentrates on the application domains of human-computer in-
teraction, multimedia analysis, and computer vision. However the results and
algorithms presented in the book are general and equally applicable to other ar-
eas including speech recognition, content-based retrieval, bioinformatics, and
text processing. Finally, the chapters in this book are mostly self contained;
each chapter includes self consistent definitions and notations meant to ease
the reading of each chapter in isolation.



Chapter 2

THEORY:
PROBABILISTIC CLASSIFIERS

Probabilistic classifiers are developed by assuming generative models which
are product distributions over the original attribute space (as in naive Bayes) or
more involved spaces (as in general Bayesian networks). While this paradigm
has been shown experimentally successful on real world applications, de-
spite vastly simplified probabilistic assumptions, the question of why these
approaches work is still open.

The goal of this chapter is to give an answer to this question. We show that
almost all joint distributions with a given set of marginals (i.e., all distributions
that could have given rise to the classifier learned) or, equivalently, almost all
data sets that yield this set of marginals, are very close (in terms of distribu-
tional distance) to the product distribution on the marginals; the number of
these distributions goes down exponentially with their distance from the prod-
uct distribution. Consequently, as we show, for almost all joint distributions
with this set of marginals, the penalty incurred in using the marginal distri-
bution rather than the true one is small. In addition to resolving the puzzle
surrounding the success of probabilistic classifiers, our results contribute to
understanding the tradeoffs in developing probabilistic classifiers and help in
developing better classifiers.

1. Introduction

Probabilistic classifiers and, in particular, the archetypical naive Bayes clas-
sifier, are among the most popular classifiers used in the machine learning
community and increasingly in many applications. These classifiers are de-
rived from generative probability models which provide a principled way to
the study of statistical classification in complex domains such as natural lan-
guage and visual processing.
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The study of probabilistic classification is the study of approximating a joint
distribution with a product distribution. Bayes rule is used to estimate the con-
ditional probability of a class label y, and then assumptions are made on the
model, to decompose this probability into a product of conditional probabili-
ties:

P (y|x) = P (y|x1, x2, . . . xn) =
n∏

i=1

P (xi|x1, . . . xi−1, y)
P (y)
P (x)

=
n′∏

j=1

P (yj |y)
P (y)
P (x)

, (2.1)

where x = (x1, . . . , xn) is the observation and the yj = gjg (x1, . . . xi−1, xi),
for some function gjg , are independent given the class label y.

While the use of Bayes rule is harmless, the final decomposition step in-
troduces independence assumptions which may not hold in the data. The
functions gjg encode the probabilistic assumptions and allow the representa-
tion of any Bayesian network, e.g., a Markov model. The most common
model used in classification, however, is the naive Bayes model in which
∀j, g∀ jg (x1, . . . xi−1, xi) ≡ xi. That is, the original attributes are assumed to
be independent given the class label.

Although the naive Bayes algorithm makes some unrealistic probabilistic
assumptions, it has been found to work remarkably well in practice [Elkan,
1997; Domingos and Pazzani, 1997]. Roth [Roth, 1999] gave a partial answer
to this unexpected behavior using techniques from learning theory. It is shown
that naive Bayes and other probabilistic classifiers are all “Linear Statistical
Query” classifiers; thus, PAC type guarantees [Valiant, 1984] can be given on
the performance of the classifier on future, previously unseen data, as a func-
tion of its performance on the training data, independently of the probabilistic
assumptions made when deriving the classifier. However, the key question that
underlies the success of probabilistic classifiers is still open. That is, why is
it even possible to get good performance on the training data, i.e., to “fit the
data”1 with a classifier that relies heavily on extremely simplified probabilistic
assumptions on the data?

This chapter resolves this question and develops arguments that could ex-
plain the success of probabilistic classifiers and, in particular, that of naive
Bayes. The results are developed by doing the combinatoric analysis on the
space of all distributions satisfying some properties.

1We assume here a fixed feature space; clearly, by blowing up the feature space it is always possible to fit
the data.
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One important point to note is that in this analysis we have made use of
the counting arguments to derive most of the results. What that means is that
we look at the space of all distributions, where distributions are quantized in
some sense (which will be made clear in the respective context), and then we
look at these finite number of points (each distribution can be thought of as
a point in the distribution space), and try to quantify the properties of this
space. This is very different from assuming the uniform prior distribution over
the distribution space as this allows our results to be extended to any prior
distribution.

This chapter starts by quantifying the optimal Bayes error as a function of
the entropy of the data conditioned upon the class label. We develop upper
and lower bounds on this term (give the feasible region), and discuss where do
most of the distributions lie relative to these bounds. While this gives some idea
as to what can be expected in the best case, one would like to quantify what
happens in realistic situations, when the probability distribution is not known.
Normally in such circumstances one ends up making a number of indepen-
dence assumption. Quantifying the penalty incurred due to the independence
assumptions allows us to show its direct relation to the distributional distance
between the true (joint) and the product distribution over the marginals used to
derive the classifier. This is used to derive the main result of the chapter which,
we believe, explains the practical success of product distribution based classi-
fiers. Informally, we show that almost all joint distributions with a given set of
marginals (that is, all distributions that could have given rise to the classifier
learned)2 are very close to the product distribution on the marginals - the num-
ber of these distributions goes down exponentially with their distance from the
product distribution. Consequently, the error incurred when predicting using
the product distribution is small for almost all joint distributions with the same
marginals.

There is no claim in this chapter that distributions governing “practical”
problems are sampled according to a uniform distribution over these marginal
distributions. Clearly, there are many distributions for which the product dis-
tribution based algorithm will not perform well (e.g., see [Roth, 1999]) and in
some situations, these could be the interesting distributions. The counting ar-
guments developed here suggest, though, that “bad” distributions are relatively
rare.

Finally, we show how these insights may allow one to quantify the poten-
tial gain achieved by the use of complex probabilistic models thus explaining
phenomena observed previously by experimenters.

2Or, equivalently, as we show, almost all data sets with this set of marginals.
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It is important to note that this analysis ignores small sample effects. We
do not attend to learnability issues but rather assume that good estimates of the
statistics required by the classifier can be obtained; the chapter concentrates on
analyzing the properties of the resulting classifiers.

2. Preliminaries and Notations
Throughout this chapter we will use capital letter to denote random vari-

ables and the same token in lower case (x, y, z) to denote particular instantia-
tions of them. P (x|y) will denote the probability of random variable X taking
on value x, given that the random variable Y takes the value y. Xi denotes
the ith component of the random vector X . For a probability distribution P ,
P [n](·) denotes the joint probability of observing a sequence of n i.i.d samples
distributed according to P .

Throughout the chapter we consider random variables over a discrete do-
main X , of size |X | = N , or over X ×Y where Y is also discrete and typically,
|Y| = 2. In these cases, we typically denote by X = {0, 1, ..., N − 1},Y =
{0, 1}.

Definition 2.1 Let X = (X1, X2, ..., Xn) be a random vector over X ,
distributed according to Q. The marginal distribution of the ith component of
X , denoted Qi, is a distribution over Xi, given by

Qi(x) =
∑

xj∈Xj ;∀j∀ �=�� i

Q(x1, . . . xi−1, xi, xi+1, . . . xn). (2.2)

The product distribution induced by Q over X is given by

Qm(x) =
n∏

i=1

Qi(xi). (2.3)

Note that Qm is identical to Q when assuming that in Q, the components Xi

of X are independent of each other. We sometimes call Qm the marginal dis-
tribution induced by Q.

2.1 Maximum Likelihood Classification
We consider the standard binary classification problem in a probabilistic

setting. This model assumes that data elements (x, y) are sampled according
to some arbitrary distribution P on X × {0, 1}. X is the instance space and
y ∈ {0, 1} is called the class label. The goal of the learner is to determine,
given a new example x ∈ X , its most likely corresponding label y(x), which
is chosen as follows:

y(x) = argmax
i∈{0,1}

P (y = i|x) = argmax
i∈{0,1}

P (x|y = i)
P (y = i)

P (x)
. (2.4)



Preliminaries and Notations 19

Given the distribution P on X × {0, 1}, we define the following distributions
over X :

P0PP
.= P (x|y = 0) and P1PP

.= P (x|y = 1). (2.5)

With this notation, the Bayesian classifier (in Eqn 2.4) predicts y = 1 if and
only if P0PP (x) < P1PP (x).

When X = {0, 1}n (or any other discrete product space) we will write
x = (x1, . . . xn) ∈ X , and denote a sample of elements in X by S =
{x1, . . . xm} ⊆ X , with |S| = m. The sample is used to estimate P (x|y),
which is approximated using a conditional independence assumption:

P (x|y) = P (x1, . . . xn|y) =
n∏

i=1

P (xi|y). (2.6)

Using the conditional independence assumption, the prediction in Eqn 2.4 is
done by estimating the product distributions induced by P0PP and P1PP ,

PmPP 0 =
n∏

i=1

P (xi|y = 0) and PmPP 1 =
n∏

i=1

P (xi|y = 1), (2.7)

and predicting y(x) = 1 iff

p(y = 0)PmPP 0(x) ≤ p(y = 1)PmPP 1(x). (2.8)

This is typically referred to as the naive Bayes methods of classification [Duda
and Hart, 1973].

2.2 Information Theory
Definition 2.2 (Entropy; Kullback-Leibler Distance) Let X
be a random variable over X , distributed according to P .

The entropy of X (sometimes written as “the entropy of P”) is given by

H(X) = H(P ) = −
∑
x∈X

P (x) log P (x) (2.9)

where the log is to the base 2. Note that the entropy of X can also be in-
terpreted as the expected value of log 1

P (X) , which is a function of random
variable X drawn according to P .

The joint entropy H(X, Y ) of a pair of discrete random variables (X, Y )
with a joint distribution P (x, y) is defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

P (x, y) log P (x, y). (2.10)
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and the conditional entropy H(X|Y ) of X given Y is defined as

H(X|Y ) = −
∑
x∈X

∑
y∈Y

P (x, y) log P (x|y). (2.11)

Let P,Q be two probability distributions over a discrete domain X . The
relative entropy or the Kullback-Leibler distance between P and Q is defined
as

D(P ||Q) =
∑
x∈X

P (x) log
P (x)
Q(x)

= EpEE log
P (X)
Q(X)

. (2.12)

2.3 Inequalities
1 (Jensen’s Inequality)( [Cover and Thomas, 1991], p. 25) If f is a convex

function and X is a random variable, then

E[f(X)] ≥ f(E[X]). (2.13)

2 For any probability density function P over domain X = {1, 2, ..., N} we
have

H(P ) = EP (− log P (X)) = −
N∑

i=1

pi log pi ≥ − log
N∑

i=1

p2
i (2.14)

which follows from Jensen’s inequality using the convexity of − log(x),
applied to the random variable p(x), where X ∼ p(x).

3 For any x, k > 0, we have

1 + log k − kx ≤ − log x (2.15)

which follows from log(x) ≤ x − 1 by replacing x by kx. Equality holds
when k = 1/x. Equivalently, replacing x by e−x we have

1 − x ≤ e−x. (2.16)

For more details please see [Cover and Thomas, 1991].

3. Bayes Optimal Error and Entropy
In this section, we are interested in the optimal error achievable by a Bayes

classifier (Eqn 2.4) on a sample {(x, y)}m
1 sampled according to a distribution

P over X ×{0, 1}. At this point no independence assumption is made and the
results in this section apply to any Maximum likelihood classifier as defined
in Eqn 2.4. For simplicity of analysis, we restrict our discussion to the equal
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class probability case, P (y = 1) = P (y = 0) = 1
2 . The optimal Bayes error

is defined by

ε =
1
2
P0PP ({x|P1PP (x) > P0PP (x)}) +

1
2
P1PP ({x|P0PP (x) > P1PP (x)}), (2.17)

and the following result relates it to the distance between P0PP and P1PP :

Lemma 2.3 ( [Devroye et al., 1996], p. 15) The Bayes optimal error under
the equal class probability assumption is:

ε =
1
2
− 1

4

∑
x

|P0PP (x) − P1PP (x)|. (2.18)

Note that P0PP (x) and P1PP (x) are “independent” quantities. Theorem 3.2 from
[Devroye et al., 1996] also gives the relation between the Bayes optimal error
and the entropy of the class label (random variable Y ∈ Y) conditioned upon
the data X ∈ X :

− log(1−ε) ≤ H(Y |X) ≡ H(P (y|x)) ≤ −ε log ε−(1−ε) log(1−ε). (2.19)

However, the availability of P (y|x) typically depends on first learning a prob-
abilistic classifier which might require a number of assumptions. In what fol-
lows, we develop results that relate the lowest achievable Bayes error and the
conditional entropy of the input data given the class label, thus allowing an
assessment of the optimal performance of the Bayes classifier directly from
the given data. Naturally, this relation is much looser than the one given
in Eqn 2.19, as has been documented in previous attempts to develop bounds
of this sort [Feder and Merhav, 1994]. Let HbHH (p) denote the entropy of the
distribution {p, 1 − p}:

HbHH (p) = −(1 − p) log(1 − p) − p log p.

Theorem 2.4 Let X ∈ X denote the feature vector and Y ∈ Y , denote
the class label, then under equal class probability assumption, and an optimal
Bayes error of ε, the conditional entropy H(X|Y ) of input data conditioned
upon the class label is bounded by

1
2
HbHH (2ε) ≤ H(X|Y ) ≤ HbHH (ε) + log

N

2
. (2.20)

We prove the theorem using the following sequence of lemmas. For simplicity,
our analysis assumes that N is an even number. The general case follows
similarly. In the following lemmas we consider two probability distributions
P,Q defined over X = {0, 1, . . . , N − 1}. Let pi = P (x = i) and qi =
Q(x = i). Without losing generality, we assume that ∀i, j : 0 ≤ i, j < N ,
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when i < j, pi − qi > pj − qjq (which can always be achieved by renaming the
elements of X ).

Lemma 2.5 Consider two probability distributions P,Q defined over X =
{0, 1, . . . , N − 1}. Let pi = P (x = i) and qi = Q(x = i) and denote∑

i |pi − qi| = α. Then, the sum H(P ) + H(Q) obtains its maximal value
when for some constants c1, c2, d1, d2 (which depend on α, K, N ), P and Q
satisfy:

∀i, 0 ≤ i ≤ M/2 pi = c1, qi = d1 and

∀i, M/2 < i ≤ N pi = c2, qi = d2. (2.21)

Proof. We will first show that, H(P ) + H(Q) obtains its maximum value for
some K, such that

∀i, 0 ≤ i ≤ K pi = c1, qi = d1 and ∀i, K < i ≤ N pi = c2, qi = d2,

and will then show that this maximum is achieved for K = M/2.
We want to maximize the function

−
∑

i

pi log pi −
∑

i

qi log qi

subject to the constraints∑
i

|pi − qi| = α,
∑

i

pi = 1,
∑

i

qi = 1.

The Lagrange formulation for the above optimization problem can be written
as

λ = −
∑

i

pi log pi −
∑

i

qi log qi

+a

(∑
i

|pi − qi| − α

)
+ b

(∑
i

pi − 1

)
+ c

(∑
i

qi − 1

)
,

where a, b, c are Lagrange multipliers. When differentiating λ with respect to
pi and qi, we obtain that the sum of the two entropies is maximized when, for
some constants A,B, C,

∀i : 0 ≤ i ≤ K, pi = A exp(C), qi = B exp(−C),

and
∀i : K < i ≤ N, pi = A exp(−C), qi = B exp(C)

where 0 ≤ K ≤ N is the largest index such that pi − qi > 0.
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Denote p =
K∑

i=1
pi and q =

K∑
i=1

qi. Then, we have (p− q) + ((1− q)− (1−
p)) = α, giving

0 ≤ i ≤ K, pi = p
K , qi = pi − α

2K

K < i ≤ N, pi = 1−p
N−K , qi = pi + α

2(N−K) .

These distributions maximize H(P ) + H(Q), which can now be written as

H(P )+H++ (Q) = −p log
p

K
− (1 − p) log

1 − p

N − K

−(p − α/2) log
p − α/2

K
− (1 − p + α/2) log

1 − p + α/2
N − K

.

Differentiating the above expression with respect to K and with respect to p,
the maximum is achieved when K = N/2 and

p =
1 + α/2

2
, q =

1 − α/2
2

. (2.22)

The next lemma is used later to develop the lower bound on the conditional
entropy.

Lemma 2.6 Consider two probability distributions P,Q defined over X =
{0, 1, . . . , N − 1}. Let pi = P (x = i) and qi = Q(x = i) and denote∑

i |pi − qi| = α. The sum H(P ) + H(Q) of their entropies is minimized
when all the mass of Q is on single instance i (i.e. qi = 1) with for same i,
pi = 1 − α/2 and for some j �=�� i, pj = α/2. That is,

P = {0, .., 0, pj =
α

2
, 0, ..., 0, pi = 1 − α

2
, 0, .., 0} and

Q = {0, .., 0, 0, 0, ..., 0, pi = 1, 0, ..., 0}.
Proof. Note that for any set of non negative numbers a1, a2, ...,∑

i

ai log ai ≤
∑

i

ai log
∑

j

aj ≤
(∑

i

ai

)
log

(∑
i

ai

)
.

We want to minimize the quantity:

H = −
∑

i

pi log pi −
∑

i

qi log qi,

under the constraint
∑

i |pi − qi| = α. As before (Lemma 2.5), assume that
for 0 ≤ i ≤ K, pi ≥ qi and for K < i ≤ N − 1, pi ≤ qi, where K ∈
{0, ..., N − 1}. This implies:
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H = −
∑

i

pi log pi −
∑

i

qi log qi

= −
K∑

i=0

pi log pi −
N−1∑

i=K+1

pi log pi −
K∑

i=0

qi log qi −
N−1∑

i=K+1

qi log qi

≥ −p log p − (1 − p) log(1 − p) − q log q − (1 − q) log(1 − q) (2.23)

where p =
∑K

i=0 pi and q =
∑K

i=0 qi.
The equality in Eqn 2.22 is achieved if for some 0 ≤ j ≤ K, pj = p and

∀i : i �=�� j, 0 ≤ i ≤ K, pi = 0.
In a similar manner, one can write the same equations for (1 − p), q, and

(1 − q). The constraint on the difference of the two distribution, forces that
p − q + (1 − q) − (1 − p) = α which implies that p = q + α

2 . Under this, we
can write H as:

H = − (q + α/2) log(q + α/2) − (1 − q − α/2) log(1 − q − α/2)
− q log q − (1 − q) log(1 − q).

In the above expression, H is a concave function of q and the minimum (of
H) is achieved when either q = 0 or q = 1. By symmetry p = α

2 and q = 0.

Now we are in a position to prove Theorem 2.4. Lemma 2.5 is used to
prove the upper bound and Lemma 2.6 is used to prove the lower bound on the
entropy.

Proof. (Theorem 2.4) Assume that P (y = 0) = P (y = 1) = 1
2 (equal class

probability) and a Bayes optimal error of ε. For the upper bound on H(X|Y )
we would like to obtain P0PP and P1PP that achieve the maximum conditional en-
tropy. Since

H(x|y) = P (y = 0)H(P0PP (x)) + P (y = 1)H(P1PP (x))

=
1
2
H(P0PP (x)) +

1
2
H(P1PP (x)). (2.24)

Defining P0PP
.= P and P1PP

.= Q, the conditional entropy is maximized when
the sum of H(P (x)) + H(Q(x)) is maximized. The Bayes optimal error of ε
constrains the two distribution to satisfy

∑
x |P0PP (x) − P1PP (x)| = 2 − 4ε = α.

Using the result of Lemma 2.5, we obtain the distributions that maximize the
conditional entropy as:

P0PP =
{

1 + α
2

N
,
1 + α

2

N
, ...,

1 − α
2

N
,
1 − α

2

N

}
P1PP =

{
1 − α

2

N
,
1 − α

2

N
, ...,

1 + α
2

N
,
1 + α

2

N

}
.
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Note that because of the special form of the above distributions, H(P ) =
H(Q). The conditional entropy H(X|Y ) is given by

H(x|y) =
1
2
H(P0PP ) +

1
2
H(P1PP ) = H(P0PP )

= −1 + α/2
2

log
1/2 + α/4

N/2
− 1 − α/2

2
log

1/2 − α/4
N/2

= −1 + α/2
2

log(1/2 + α/4)− 1 − α/2
2

log(1/2 − α/4) + log
N

2

= −(1 − ε) log(1 − ε) − (ε) log(ε) + log
N

2

= HbHH (ε) + log
N

2
.

Lemma 2.6 is used to prove the lower bound on the conditional entropy
given Bayes optimal error of ε. The choice of distributions in this case is

P0PP = {0, 0, ..., 1 − α

2
, ..., 0,

α

2
, 0, ..., 0} and

P1PP = {0, 0, ..., 1, ..., 0, 0, 0, ..., 0}.
The conditional entropy in this case is given by

H(x|y) =
1
2
H(P0PP ) +

1
2
H(P1PP )

= −(1 − α/2) log(1 − α/2) − (α/2) log(α/2) + 0
= −(2ε) log(2ε) − (1 − 2ε) log(1 − 2ε)
= HbHH (2ε).

The results of the theorem are depicted in Figure 2.1 for |X | = N = 4.
The x-axis gives the conditional entropy of a distribution and the y-axis gives
the corresponding range of the Bayes optimal error that can be achieved. The
bounds just obtained, imply that the points outside the shaded area, in the fig-
ure, cannot be realized. Note that these are tight bounds, in the sense that there
are distributions on the boundary of the curves (bounding the shaded region).
Interestingly, it also addresses the common misconception that “low entropy
implies low error and high entropy implies high error”. Our analysis shows
that while the latter is correct, the former may not be. That is, it is possible to
come up with a distribution with extremely low conditional entropy and still
have high Bayes optimal error. However, it does say that if the conditional en-
tropy is high, then one is going to make large error. We observe that when the
conditional entropy is zero, the error can either be 0 (no error, perfect classi-
fier, point (A) on graph) or 50% error (point (B) on graph). Although somewhat
counterintuitive, consider the following example.
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Figure 2.1. The relation between the error and the conditional entropy of the data, for N=4.
Here the x-axis gives the conditional entropy and the y-axis gives the range of the Bayes optimal
error. The shaded region represents the feasible region (the distributions with the corresponding
error and entropy are realizable). The dotted curve gives the empirical distribution of the joint
distributions over a given set of input features.

Example 2.7 Let P0PP (x = 1) = 1 and P0PP (x = i) = 0,∀i �= 1�� and
∀x, P1PP (x) = P0PP (x). Then H(x|y) = 0 since H(P0PP (x)) = H(P1PP (x)) = 0
and the probability of error is 0.5.

The other critical points on this curve are also realizable. Point (D), which cor-
responds to the maximum entropy is achieved only when ∀x, P0PP (x) = 1

N and
P1PP (x) = 1

N . Again the error is 0.5. Point (C) corresponds to the maximum
entropy with 0 achievable error. It is given by H(P (y|x)) = log N

2 . Finally,
point (E) corresponds to the minimum entropy for which there exists a distri-
bution for any value of optimal error. This corresponds to entropy = 0.5.
Continuity arguments imply that all the shaded area is realizable. At a first
glance it appears that the points (A) and (C) are very far apart, as (A) corre-
sponds to 0 entropy whereas (C) corresponds to entropy of log N

2 . One might
think that most of the joint probability distributions are going to be between
(A) and (C) - a range for which the bounds are vacuous. It turns out, however,
that most of the distributions actually lie beyond the log N

2 entropy point.

Theorem 2.8 Consider a probability distribution over x ∈ {0, 1, ..., N −
1} given by P = [p[[ 0, ..., pN−1], where pi = P (x = i), and assume that
H(p) ≤ log N

2 . Then, ∀δ : 0 < δ < 1
N , the distribution Q defined by

qi = 1
N + δ(pi − 1

N ), ∀i satisfies H(Q) > log N
2 .
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Proof. First note that
∑

i qi = 1 and for 0 < δ < 1, ∀i, qi > 0. Therefore,
Q is indeed a probability distribution. To show that H(Q) > log N

2 consider

H(Q) − log N
2 = −∑N

i=1 qi log
(
qi

N
2

)
. Now if 0 < δ < 1

N then ∀i, N
2 qi <

1, implying that H(Q) > log N
2 . Since H(P ) ≤ log N

2 , P �=�� Q. Hence,
for each δ we have defined a 1-1 mapping of distributions with entropy below
log N

2 to those with entropy above it.

Consequently, the number of distributions with entropy above log N
2 is at

least as much as the number of those with entropy below it. This is illustrated
using the dotted curve in Figure 2.1 for the case N = 4. For the simulations
we fixed the resolution and did not distinguish between two probability distri-
butions for which the probability assignments for all data points is within some
small range. We then generated all the conditional probability distributions and
their (normalized) histogram. This is plotted as the dotted curve superimposed
on the bounds in Figure 2.1. It is clearly evident that most of the distributions
lie in the high entropy region, where the relation between the entropy and error
in Theorem 2.4 carries useful information.

4. Analysis of Classification Error of Estimated
(Mismatched) Distribution

While in the previous section, we bounded the Bayes optimal error assum-
ing the correct joint probability is known, in this section the more interesting
case is investigated – the mismatched probability distribution. The assumption
is that the learner has estimated a probability distribution that is different from
the true joint distribution and this estimated distribution is then used for classi-
fication. The mismatch considered can either be because of the limited number
of samples used for learning or because of the assumptions made in the form
of the distribution. The effect of the former, decays down with the increasing
number of training sample but the effect of the later stays irrespective of the
size of the training sample. This work studies the later effect. We assume that
we have enough training data to learn the distributions but the mismatch may
arise because of the assumptions made in terms of the model. This section
studies the degradation of the performance because of this mismatch between
the true and the estimated distribution. The performance measure used in our
study is the probability of error. The problem is being analyzed under two
frameworks - group learning or hypothesis testing framework (where one ob-
serves a number of samples from a certain class and then makes a decision) and
the classification framework (where decision is made independently for each
sample.) As is shown, under both of these frameworks, the probability of error
is bounded from above by a function of KL-distance between the true and the
approximated distribution.
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4.1 Hypothesis Testing Framework
Given a sequence (X1, ..., XM ) of random variables, the area of statistical

hypothesis testing attempts to determine whether all the samples (in the given
sequence) came from hypothesis H1 or H0HH

H0HH ∼ P0PP (X1, ..., XM ) and H1 ∼ P1PP (X1, ..., XM ). (2.25)

Likelihood ratio test is the standard way of making decisions in the hypothe-
sis testing framework which is similar to the Bayesian classification paradigm
(Eqn 2.4).

This section analyzes the probability of misclassification from the perspec-
tive of hypothesis testing. That is, this is the probability of misclassifying a
sample as coming from hypothesis H0HH ∼ P0PP (X1, ..., XM ) when it actually
came from H1 ∼ P1PP (X1, ...,XM ), and vice versa. Since it is assumed that the
distributions P0PP and P1PP have already been estimated from data, this perspective
(i.e., looking at many samples X1, ...,XM ) allows us to obtain better bounds
for the performance of these estimated distributions3. This outlook allows one
to group the probability of error into two categories α and β: α (Type I error)
is the probability of misclassification when the true hypothesis is H0HH ∼ P0PP
and β (Type II error) is the misclassification error when the true hypothesis is
H1 ∼ P1PP . Formally, if A = {x : P0PP (x)

P1PP (x) > τ} is the acceptance region for
hypothesis H0HH , then α = P0PP (Ac) and β = P1PP (A). Note that AM , αM , and
βM denote the corresponding terms when the decision is made for M random
vectors.

Stein’s lemma [Cover and Thomas, 1991] gives asymptotic bounds on the
performance of a classifier which is using Likelihood ratio test for deciding
between the two hypotheses. It shows that under the condition that αM < ε,
and for 0 < ε < 1

2 , defining βε
M = minαM<ε βM gives

lim
ε→0

lim
M→∞

1
M

log βε
M = −D(P0PP ||P1PP ). (2.26)

In practice, however, rather than the true joint distribution over the samples, the
estimated distribution from the data (which may be the induced product dis-
tribution, derived using conditional independence assumptions) is used. The
result given by Stein’s lemma does not hold in this case (i.e. when true distri-
bution is not known) and we prove a modified version of it for this case.

Theorem 2.9 (Modified Stein’s Lemma) Let X1, ...,XM be i.i.d ∼ Q. Con-
sider the hypothesis test between two hypothesis Q ∼ P0PP , and Q ∼ P1PP . Let

3For the purpose of the analysis of the performance, we study performance using error on the sample.
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AM be the acceptance region for hypothesis H0HH = Q ∼ P0PP . The probabili-
ties of error can then be written as αM = PM

0PP (Ac
M ) and βM = PM

1PP (AM ).
Assume P

′
0PP is used instead of P0PP for the likelihood ratio test. Then if AM is

chosen such that αM < ε, then the type II error (β) is given by

lim
ε→0

lim
M→∞

1
M

log βε
M = −DP0PP (P

′
0PP ||P1PP ) = −EP0PP

(
log

P
′
0PP

P1PP

)
. (2.27)

See Appendix A for the proof.
By writing DP0PP (P

′
0PP ||P1PP ) in a more recognizable form, the asymptotic bound

on the error can be written as:
1
n

log(error) ≤ −DP0PP (P
′
0PP ||P1PP ) = −D(P0PP ||P1PP ) + D(P0PP ||P ′

0PP ). (2.28)

The first term on the right hand side of Eqn 2.28 is the same as the one in
the original Stein’s Lemma. Since Stein’s lemma gave the minimum error
achievable by any algorithm, we cannot do better than this quantity which
can be viewed as a “baseline” term. Improving the approximation affects the
second term - the distance between the true distribution and the approximation
- which acts as the actual penalty.

Although the above bound is derived under the assumption that only the dis-
tribution corresponding to one hypothesis is approximated, a similar bound can
be derived for the more general case (when the distributions corresponding to
both hypothesis are unknown) under the condition that P1PP (x) ≤ KP

′
1PP (x) for

some finite K. In this case, the bound will be given by log DP0PP (P
′
0PP ||P ′

1PP ). The
condition is fairly general and always holds for product distributions. However,
the bound given by Eqn 2.27 highlights some basic properties of the distribu-
tions and will be analyzed in the rest of the chapter. The general case follows
similar arguments. Eqn 2.28 shows that the additional penalty term is related
to D(P0PP ||P ′

0PP ), with P0PP being the true distribution and P
′
0PP the approximation. In

the special case when both P1PP and P
′
0PP are product form distributions, we have:

DP0PP (P
′
0PP ||P1PP ) =

∑
x

P0PP (x) log
P

′
0PP (x)

P1PP (x)

=
∑

x1,x2,...,xn

P0PP (x1, x2, ..., xn)
∑

i

log
P0PP (xi)
P1PP (xi)

=
∑

i

P0PP (xi) log
P0PP (xi)
P1PP (xi)

= D(P
′
0PP ||P1PP ). (2.29)

Corollary 2.10 If both P
′
0PP and P1PP are product distributions then

1
n log(error) ≤ −D(P

′
0PP ||P1PP ), i.e. the bound is independent of the joint distri-

bution and depends just on the marginals.
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4.2 Classification Framework
This section analyzes the effect of the mismatched probability distributions

in the standard classification framework where the decision is made indepen-
dently for each test example. We make use of the results given in [Devroye
et al., 1996]. Under the assumption of uniform class probability (P (y = 0) =
P (y = 1) = 1/2) and if instead of using the true probability distribution
P1PP (x) and P0PP (x) one decides to use P ′

1PP (x) and P ′
0PP (x), respectively, such that

P1PP (x) + P0PP (x) = P ′
1PP (x) + P ′

0PP (x) (which essentially means that we are as-
suming that in both cases P (x) remains the same) then we have the following
lemma:

Lemma 2.11 The classification error probability, when estimated distribu-
tions (as defined above) are used, is bounded from above by:

ε̂ ≤ ε +
√

2D(P1PP ||P ′
1PP ) (2.30)

where ε̂ is the error that one makes by using the approximate distribution and
ε is the Bayes optimal error.

Proof. The proof is based on the lemma given in ([Devroye et al., 1996],
p. 16). Let g(x) = 1 whenever P1PP (x) > P0PP (x) and g′(x) = 1 whenever
P ′

1PP (x) > P ′
0PP (x). Then ε = P (g(x) �=�� y) and ε̂ = P (g′(x) �=�� y). Let I denote

an indicator function, which is 1 when its argument is true, else is zero. Then,

ε̂ − ε = P (g′(x) �=�� y) − P (g(x) �=�� y)

=
∑
x∈X

P (x)(P (g′(x) �=�� y|X = x) − P (g(x) �=�� y|X = x))

=
∑
x∈X

P (x)(P (y = 1|X = x)(I{I g(x)=1} − I{I g′(x)=1}) +

P (y = 0|X = x)(I{I g(x)=0} − I{I g′(x)=0}))

=
∑
x∈X

P (x)(2P (y = 1|X = x) − 1)(I{I g(x)=1} − I{I g′(x)=1}))

=
∑
x∈X

P (x)(2|P (y = 1|X = x) − 1/2)|)I{I g(x)�=�� g′(x)}

≤
∑
x∈X

P (x)(2|P (y = 1|X = x) − P ′(y = 1|X = x)|)

=
∑
x∈X

(|P (X = x|y = 1) − P ′(X = x|y = 1)|)

≤
√

2D(P1PP ||P ′
1PP )

where the first inequality follows from the fact that whenever I{I g(x)�=�� g′(x)} = 1,
|P (y = 1|X = x) − 1/2)| < |P (y = 1|X = x) − P ′(y = 1|X = x)| and the



Density of Distributions 31

last inequality follows from the fact that L1 norm is bounded by the function
of the KL distance ([Kullback, 1968]) as L1(P,Q) ≤√2D(P ||Q).

Interestingly, both in case of hypothesis testing and standard classification
problem, we observe that the additional penalty, when mismatched distribu-
tions are used, is directly proportional to the KL distance between the true and
the approximate (mismatched) distribution. In the next section, the space from
which distributions are sampled is analyzed.

5. Density of Distributions
As noted before, maximum likelihood classification is often done by using

a sample S = {x1, , . . . xm} ⊂ X = {0, 1}n to first estimate product distri-
butions over X (see Eqn 2.8). In this section, we investigate the effect of this
estimation (working with product distribution instead of the full joint distribu-
tion) on the classification accuracy.

Let PmPP be a product distribution induced by the sample S, and consider
the set S of all samples of size m over X that give rise to the same product
distribution PmPP . For S ∈ S, let PSPP be the joint distribution over X induced by
S. The main theorem of this section shows that of the number of samples S
that share the same product distribution, goes down exponentially fast in their
KL distance from the product distribution.

Theorem 2.12 Let S≤ε be the set of samples in S for which D(PSPP ||PmPP ) ≤
ε. Then, for some polynomial r′(·),

|S≤ε|
|S| ≥ 1

r′(m)
(1 − 2−mε). (2.31)

The next two lemmas provide the main results used in developing the proof.
Following the bound given in Theorem 12.1.3 in [Cover and Thomas, 1991]
we obtain the following lemma.

Lemma 2.13 Let S be the set of all samples of size m over X that induce the
product distribution PmPP . Then, for some polynomial r(·),

1
r(m)

2mH(PmPP ) ≤ |S| ≤ r(m)2mH(PmPP ). (2.32)

Notice that there is an exact expression for |S|, given by,

|S| =
n∏

i=1

(
m

mP i(xi), m(1 − P i(xi))

)
.

However, we are interested in the relation to entropy and thus to classification
error and therefore need a bound for this term in terms of the entropy.
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Lemma 2.14 For any 0 ≤ ε ≤ H(PmPP ), let Sε ⊆ S be the set of all samples
in S, for which D(PSPP ||PmPP ) = ε. Then, for some polynomial r(·),

1
r(m)

2m(H(PmPP )−ε) ≤ |Sε| ≤ r(m)2m(H(PmPP )−ε). (2.33)

Proof. The main step in the proof of above lemma is given by the following
claim:

Claim 1 Let PmPP be a product distribution defined by the marginals P i over
X . Then for any joint probability distribution P with the marginals P i,

H(P ) = H(PmPP ) − D(P ||PmPP ).

To see the claim, we observe that PmPP is the product distribution induced by
PsPP , and

D(P ||PmPP ) =
∑
x∈X

P (x) log P (x) −
∑

x

P (x) log PmPP (x)

= −H(P ) −
∑
x∈X

P (x1, . . . xn) log PmPP (x1, . . . xn)

= −H(P ) −
∑
x∈X

P (x1, . . . xn) log
∏

i

P i(xi)

= −H(P ) −
∑
x∈X

P (x1, . . . xn)
∑

i

log P i(xi)

= −H(P ) −
∑

i

∑
(x1,...xn)∈X

P (x1, . . . xn) log P i(xi)

= −H(P ) −
∑

i

∑
xi

∑
(x1,...xi−1,xi+1,...xn)∈X

P (x1, . . . xn) log P i(xi)

= −H(P ) −
∑

i

∑
xi

{log P i(xi)}
∑

(x1,...xi−1,xi+1,...xn)∈X
P (x1, . . . xn)

= −H(P ) −
∑

i

∑
xi

{log P i(xi)}P i(xi)

= −H(P ) +
∑

i

H(P i)

= −H(P ) + H(PmPP )

where the last equality is due to the fact that∑
i

H(P i) = H(PmPP ),
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as PmPP is the product distribution over the marginals P i ([Cover and Thomas,
1991], Theorem 2.6.6). The lemma follows by using P = PSPP and
D(PSPP ||PmPP ) = ε.

From Lemma 2.14 we get that

|Sε|
|S| ≥ 1

r2(m)
2−mε, (2.34)

and by integrating over the range [0, ε] we get Theorem 2.12.

5.1 Distributional Density
In the previous section, Theorem 2.12 was phrased in terms of the number of

sample sets that share the same marginal distribution and thus yield the same
classifier. We now prove a similar result directly in terms of the number of
joint distributions at a certain distance from their induced product distribution.
We assume a fixed resolution τ for the representation of real numbers; two real
numbers are indistinguishable if their difference is smaller than τ .

We first prove the results for distribution over an alphabet of size 2.

Theorem 2.15 Let PmPP be a product distribution over X × X , and let P be
the collection of all joint probability P over X × X that induce PmPP and P≥ε

the subset of P for which D(P ||PmPP ) ≥ ε. Then, for some constants A and B,

|P≥ε|
|P| ≤ A exp−

√
Bε. (2.35)

We prove the theorem using the following two lemmas.

Lemma 2.16 Let PmPP be a product distribution over X × X defined by pa =
P (X1 = 1) and pb = P (X2 = 1). Then there is a 1-1 correspondence
between distributions in P and δ ∈ [p[[ apb − min(pa, pb), papb]. The mapping
is given by

P = [p[[ apb − δ, pa(1− pb) + δ, (1− pa)pb + δ, (1− pa)(1− pb)− δ]. (2.36)

Proof. The probability distribution PmPP is given by

PmPP = [p[[ apb, pa(1 − pb), (1 − pa)pb, (1 − pa)(1 − pb)].

Consider a joint probability distribution P ∈ P over X × X with marginals
pa = P (X1 = 1) and pb = P (X2 = 1). Define δ = P11PP − papb. By simple
algebra we get

P = [P11PP P10PP P01PP P00PP ]
= [p[[ apb−δ, pa(1−pb)+δ, (1−pa)pb+δ, (1−pa)(1−pb)−δ]. (2.37)
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The positivity constraint forces δ to be in the range

papb − min(pa, pb) ≤ δ ≤ papb.

Therefore, any joint distribution in P can be expressed as in Eq. 2.36, and
every δ in this range defines a unique joint probability distribution in P .

Lemma 2.17 Let P≤ε be the subset of P for which D(P ||PmPP ) ≤ ε. Then
there is a 1-1 correspondence between distributions in P≥ε and δ ∈ I , where

I ⊆
[
p
[[

apb − min(pa, pb), papb − min(pa, pb) + A/2 exp(−
√

Bε)
]

∪
[
p
[[

apb − A/2 exp(−
√

Bε), papb

]
.

The mapping is the same as in Eqn. 2.36.

Proof. Given the correspondence between values of δ and distributions in P ,
one can plot H(P ) as a function of δ. For distributions in P≥ε,

H(P ) = H(PmPP ) − D(P ||PmPP ) ≤ H(PmPP ) − ε. (2.38)

We now show that this upper bound on H(P ) implies that δ needs to range in
the claimed intervals.

Define

β =
4∑

i=1

p2
i = (papb − δ)2 + ((1 − pa)pb + δ)2

+ (pa(1 − pb) + δ)2 + ((1 − pa)(1 − pb) − δ)2. (2.39)

Using inequalities 2.15 and 2.14 we get that:

1 + log k − kβ ≤ − log β ≤ H(P ).

Define h(δ) = H(P ), where P is the distribution corresponding to δ in the
mapping Eqn 2.36 and define f(δ) = 1 + log k − kβ, where β is defined by
the distribution corresponding to δ in the mapping Eqn 2.36, as in Eqn 2.38.

To argue for the restricted range of δ we discuss separately the region in
which the function f is monotonically increasing and the region in which it is
monotonically decreasing. In the first case, in order to prove the lemma we
need to show that if, for some constant r, H(P ) ≤ r then there is a value δr

such that h−1(H(P )) ≤ δr. Indeed, given r, choose δr = f−1(r). Then, from
the above inequality,

r = f(δr) ≤ h(δr).

Now, for P with H(P ) ≤ r, we have that

h−1(H(P )) ≤ δr.
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Otherwise,
H(P ) ≥ f(h−1(H(P ))) ≥ f(δr) = r,

where the left inequality is due to the fact that f is a lower bound of h and the
second is because we are working in the region in which f is monotonically
increasing. The contradiction proves the lemma.

The next step is to compute the value of δr for a particular value of r. Us-
ing Eqn 2.38, we see that δ is a parabola in r = f(δr). On solving this yields

δ1 =
B

8
−
√

A − r

4K
and δ2 =

B

8
+
√

A − r

4K
(2.40)

where A and B are some functions of pa and pb (for our analysis, the actual
values of A and B are not important). Note that Eqn 2.38 is the equation of
a parabola, which achieves its minimum at δ = B/8. This implies that if
we choose a probability distribution such that the corresponding δ is such that
δ1 < δ < δ2, then f(δ) ≥ r. At the same time H(P ) > f(δ), implies that for
this distribution, H(P ) > r. Therefore, if a probability distribution is chosen
such that H(P ) < r, then the corresponding δ is either δ < δ1 or δ > δ2.

As shown earlier, the independence assumption, corresponds to

H(P ) = H(PmPP ) − D(P ||PmPP ) = H(PmPP ) − ε = h − ε = r.

Substituting this we get,

δ1 =
B

8
−
√

ε

4K
+ A and δ2 =

B

8
+
√

ε

4K
+ A. (2.41)

Therefore if P ∈ P≥ε then

δ∈
[
Mp, Mp+

B

8
−
√

ε

4K
+A

]
∪
[
p

[[
apb−B

8
+
√

ε

4K
+A, papb

]
(2.42)

where Mp = papb −min(pa, pb). Using the fact that 1 + x ≤ ex, it is easy to
see that

B

8
−
√

ε

4K
+ A <

B

8
exp
(
− 8

B

√
ε

4K
+ A

)
.

Substituting this in the above equation proves the theorem.

This theorem shows that the number of distributions for which the KL-
distance from the product distribution is large, is small and it decays exponen-
tially with the distance from the product distribution. In the existing theorem,
we have assumed a uniform prior (in terms of counting argument) over the
parameter δ. However, it is argued that since uniform prior is not invariant
to re-parameterization, one should use a more non-informative prior and once
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such prior is the Jeffrey’s Prior [Balasubramanian et al., 2000]. Let P (y|θ) be
some probability distribution with parameter θ, then the most non-informative
prior on θ is given by

π(θ) ∝
√√√√√√√√√√−

∑
y

P (y|θ) ∂2

∂θ2
log P (y|θ). (2.43)

We argue that even under this prior, similar behavior, as seen in the previous
theorem, is observed. However, this analysis is a bit more complicated and we
are going to sketch the steps that can be used to derive the same result. We will
start by computing the prior distribution over δ ( Eqn 2.36.) Therefore, we can
write:

π(δ) ∝
√

−
∑

x

P (x|δ) ∂2

∂δ2
log P (x|δ)

=

√
1

papb − δ
+

1

(1 − pa)(1 − pb) − δ
+

1

pa(1 − pb) + δ
+

1

(1 − pa)pb + δ
. (2.44)

In the analysis done earlier, it was assumed that the number of distributions
is proportional to the length of the interval in which δ belongs. However,
under a given prior distribution over this interval, one needs to integrate the
prior distribution over this interval. from min(pa, pb) to

√
β − A. Lets denote

this by pJ
w. Using the Eqn 2.44, we obtain (for some normalization constant

C, and without loss of generality, assuming that pa < pb, and for simplicity
of analysis, we assume that values of pa, pb are such that we have symmetry,
implying that the size of the region from papb − pa to δ1 is same as the size of
the region from δ2 to papb):

pJ
w = C

∫ δ1

p

∫∫
apb−p−− a

√
1

papb−δ
+

1

(1−pa)(1−pb)−δ
+

1

pa(1−pb)+δ
+

1

(1−pa)pb+δ
dδ

≤ C

∫ δ1

p

∫∫
apb−p−− a

√
1

papb−δ
+

√
1

(1−pa)(1−pb)−δ
+

√
1

pa(1−pb)+δ
+

√
1

(1−pa)pb+δ
dδ

where we use the fact that
√

a + b <
√

a+
√

b,∀a > 0 and b > 0. Now solving
the integral, and making use of the fact that

√
a − b >

√
a −√

b,∀a > b > 0,
we obtain

pJ
w ≤ C1(C2CC +

√
δ1) (2.45)

for some constants C1, C2CC . Substituting δ1 by result from Eqn 2.40, we obtain
a result similar to the one in Eqn 2.42, except for different constants.

This theorem can be easily extended to the case of any number of variables.
Consider any joint distribution, the number of terms are 2n. The number of
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free variables, once the marginal distribution is fixed are 2n − n − 1 (1 comes
from the fact that the probabilities have to sum to 1). Let us denote these terms
by δi, 1 ≤ i ≤ 2n − n − 1. Now we can represent the other remaining joint
probabilities, in terms of the marginal probabilities and these parameters.

It is straightforward to see that all the remaining joint probabilities can be
represented in terms of the linear function of the marginal probabilities and
these parameters (δi). This implies that on fixing all but δjδ for some j, the
problem reduces to the case discussed in the previous theorem. And, from
previous theorem, we know that for any fixed probability distribution, if we
vary one parameter, then the number of distributions which are far from the
product distribution decays exponentially.

5.2 Relating to Classification Error
Together with the penalty results in Sec. 2.4, it is clear as to why we rep-

resent the distributional density in terms of the distance between the distribu-
tions. If, as probabilistic classifier do, classification with respect to P is done
using the induced product distribution PmPP , then the error incurred is related
to D(P ||PmPP ) (disregarding the baseline term in Eqn 2.28). Therefore, Theo-
rem 2.12 implies that for most data sets, the classification error is going to be
small.

In Figure 2.2, the plotted histogram shows the density of the joint distribu-
tions which have the same marginal distribution, as a function of the product
distribution and the distance between the joint and the product distribution
(D(P ||PmPP )4). For example, consider two random variables x1, x2 ∈ {0, 1}.
Lets fix P (x1 = 1) = 0.8 and P (x2 = 1) = 0.2 (i.e. fixing the marginal
distribution). This means that P (x1 = 1, x2 = 1) can take only finite number
of values (if we limit the resolution of the probabilities to say 0.001). Thus, the
figure shows that the “bad” cases (when the distribution is far from marginal)
are rare when considering the space of all possible distributions with a given
marginal distribution (or all data sets sampled according to distributions with
a given marginal). Note that, this is an upper bound analysis. Sometimes this
bound is tight, as shown in Sec. 2.4 for the case in which P1PP is in product form.
Nevertheless, there could be cases in which the bound is loose. However, the
important point to note is that the bound goes in the right direction, and in the
majority of the cases the upper bound is small.

Fig. 2.3, gives the results of simulations to validate the results presented in
the chapter. We considered a case of 2 and 3 features as input and the case of a
binary classifier. In each case, 1000 sequences of fixed length were randomly
sampled according to different joint distributions, all having the same induced

4Notice that this distance is always finite since PmPP is 0 iff P is zero.
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Figure 2.2. (a) Density of sequences of length n. The Y-axis gives the number of sequences
(K2−nε) as a function of the distance of the true joint distribution from the product distribution
(D(P0PP ||PmPP 0) = ε) in the X-axis. (b) shows the decay in the number of the distributions as a
function of the entropy of the marginal distribution and the distance of the joint distribution and
its induced product distribution. Plots are based on a two attributes case. PmPP varies from [0.3
0.3] to [0.7 0.7] (i.e., the attributes have the same marginal distribution).
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Figure 2.3. The plots (a) and (b) show histograms of the number of sample sets with a given
product distribution as a function of the KL distance between the joint distribution of the sam-
ple set and the product distribution. Plots (c) and (d) give the ratio between the classification
error when using the product distribution and the Bayes optimal error (modeling complete joint
distribution).
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product distribution. Plots of the number of sequences, with a joint distribution
at a certain distance from the product distribution are given in Fig. 2.3 (a) and
(c) (for 2 and 3 features respectively). As expected, the histogram looks very
similar to the one in Fig. 2.2. We also show in Fig. 2.3 (b) and (d) for 2
and 3 features, respectively, the resulting classification errors as a function of
the distance between the joint and the product distribution. The figures give
the ratio of the errors made during classification when one uses the product
distribution vs. the use of the true joint distribution. As expected the error
ratio (exp(−D(P ||PmPP ))) has an exponential decay.

6. Complex Probabilistic Models and Small Sample Effects
In the practice of machine learning [Golding, 1995; Schneiderman and

Kanade, 2000], the use of probabilistic classification algorithms is preceded
by the generation of new features from the original attributes in the space
which can be seen as using complex probabilistic classifiers. We analyze the
particular case of Tree-Augmented Naive Bayes (TAN) classifier introduced
in [Friedman et al., 1997], which is a sophisticated form of the Naive Bayes
classifier modeling higher (second) order probabilistic dependencies between
the attributes. More details on the TAN classifier are given in Chapter 7.

Table 2.1. This table compares the performance of Naive Bayes classifier (NB) with the Tree-
Augmented Naive Bayes classifier (TAN). The results presented here are the ones published
in [Friedman et al., 1997]. The Avr. Diff. column is the average (over the two classes) of the
distances between the TAN and the Naive product distributions.

Dataset D(P0PP ||PmPP 0) D(P1PP ||PmPP 1) D(P0PP ||P1PP ) D(P1PP ||P0PP )

Pima 0.0957 0.0226 0.9432 0.8105
Breast 0.1719 0.4458 6.78 9.70

Mofn-3-7-10 0.3091 0.3711 0.1096 0.1137
Diabetes 0.0228 0.0953 0.7975 0.9421
Flare 0.5512 0.7032 0.8056 0.8664

Dataset Avg. Diff NB Res TAN Res
Pima 0.8177 75.51±1.63 75.13±1.36

Breast 7.9311 97.36±0.50 95.75±1.25
Mofn-3-7-10 -0.2284 86.43±1.07 91.70±0.86

Diabetes 0.8108 74.48±0.89 75.13±0.98
Flare 0.2088 79.46±1.11 82.74±1.60

Friedman et al. [Friedman et al., 1997] have conducted a number of experi-
ments and reported improved results on some of the datasets by the use of TAN
over the standard naive Bayes. It is easy to see that by modeling the TAN dis-
tribution, one is essentially decreasing the distance between the true (joint) and
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the approximated distribution. i.e. D(P ||PmPP ) ≥ D(P ||PTANPP ) where PTANPP
refers to the probability distribution modeled by TAN. The proof of this is given
in Appendix B. Replacing P by either P0PP or P1PP reduces to the case presented
in Section 2.4. Based on the results developed in the previous sections, one
can argue that reduction in D(P ||PmPP ) is directly mapped to the reduction in
the bound on error, thus explaining the better performance. Table 2.1 exhibits
this result when evaluated on five data sets (chosen based on the number of at-
tributes and training examples) studied in [Friedman et al., 1997]. In addition
to presenting the results published in [Friedman et al., 1997], we have com-
puted, for each one of the classes (0, 1), the distance between the pure naive
Bayes and the TAN distribution, and their average. The Avr. Diff. column is
the average (over the two classes) of the distances between the TAN and the
product distributions. Clearly our results predict well the success (rows 3, 5)
and failure (row 2) of TAN over the Naive Bayesian distribution.

As mentioned before, in this chapter we have ignored small sample effects,
and assumed that good estimates of the statistics required by the classifier can
be obtained. In general, when the amount of data available is small, the naive
Bayes classifier may actually do better than the more complex probability mod-
els because of the insufficient amount of data that is available. In fact, this has
been empirically observed and discussed by a number of researchers [Fried-
man, 1997; Friedman et al., 1997].

7. Summary

In the last few years we have seen a surge in learning work that is based on
probabilistic classifiers. While this paradigm has been shown experimentally
successful on many real world applications, it clearly makes vastly simplified
probabilistic assumptions. This chapter uses an information theoretic frame-
work to resolve the fundamental question of: why do these approaches work.
On the way to resolving this puzzle, we developed methods for analyzing prob-
abilistic classifiers and contributed to understanding the tradeoffs in developing
probabilistic classifiers and thus to the development of better classifiers.

However, another view point in understanding this theory comes from the
probably approximately correct (PAC) viewpoint. In the next chapter, we use
the PAC framework and try to understand why learning works in many cogni-
tive situations which otherwise seem to be very hard to learn.

Appendix A

THEOREM 2.9 (Modified Stein’s Lemma) Let X1, ..., XM be i.i.d ∼ Q. Con-
sider the hypothesis test between two hypothesis Q ∼ P0PP , and Q ∼ P1PP . Let
AM be the acceptance region for hypothesis H0HH = Q ∼ P0PP . The probabilities
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of error can be written as

αM = PM
0PP (Ac

M ) and βM = PM
1PP (AM ). (2.46)

Assume P
′
0PP is used instead of P0PP for the likelihood ratio test. Then if AM is

chosen (under the likelihood ratio test, see Eqn 2.48) such that αM < ε, then
the type II error (β) is given by

lim
ε→0

lim
M→∞

1
M

log βε
M = −DP0PP (P

′
0PP ||P1PP ) = −EP0PP (log

P
′
0PP

P1PP
) (2.47)

Proof. Let us define AM as

AM =

{
x ∈ XM : 2M(DP0PP (P

′
0PP ||P1PP )−δ) ≤ P

′
0PP (x)

P1PP (x)
≤ 2M(DP0PP (P

′
0PP ||P1PP )+δ)

}
.

First we will show that with this definition indeed αM < ε; this is done
by showing that 1 − αM = P (AM ) → 1. The second step will prove the
statement made in Eqn 2.27.

1. lim
M→∞

P0PP (AM ) → 1. This follows from

lim
M→∞

P0PP (AM ) = lim
M→∞

PM
0PP

{
1
M

M∑
i=1

log
P

′
0PP (xi)

P1PP (xi)

∈
(
DP0PP (P

′
0PP ||P1PP ) − δ, DP0PP (P

′
0PP ||P1PP ) + δ

)}
→ 1

which follows directly from the strong law of large numbers.
2. Using the definition of AM , we have

Pn
1PP (AM ) =

∑
AM

P1PP (x) ≤
∑
AM

P
′
0PP (x)2−M(DP0PP (P

′
0PP ||P1PP )−δ)

= 2−M(DP0PP (P
′
0PP ||P1PP )−δ) K

where K =
∑
AM

P
′
0PP (x), a constant less than 1.

Similarly, it is straight forward to show that

PM
1PP (AM ) ≥ 2−M(DP0PP (P

′
0PP ||P1PP )+δ)K.

Now if we denote βM = PM
1PP (AM ), the error of type II, then

−DP0PP (P
′
0PP ||P1PP ) − δ +

log K

M
≤ 1

M
log βM ≤ −DP0PP (P

′
0PP ||P1PP ) + δ +

log K

M
.

Therefore, it follows that

lim
M→∞

1
M

log βM = −DP0PP (P
′
0PP ||P1PP ).
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Appendix B
Our analysis presented in the following theorem justifies the improvement

in results obtained by Tree-Augmented Naive Bayes networks over the simple
naive Bayes classifier.

Theorem 2.18 Let P be the true join probability distribution over the ran-
dom variables x1, x2, ..., xM . Let PmPP be the induced product distribution
(under the assumption that all the random variables are independent of each
other). Let PTANPP be the induced product distribution over some pairs or ran-
dom variables and which considers the other variables to be independent of
each other. To simplify the analysis, we will assume that PTANPP models the
joint distribution of x1, x2 and considers all other variables to be independent
of each other. Then,

D(P ||PmPP ) ≥ D(P ||PTANPP ). (2.48)

Proof. Under the assumption

D(P ||PmPP ) − D(P ||PTANPP ) =
∑
x∈X

P log
P

PmPP
−
∑
x∈X

P log
P

PTANPP

=
∑
x∈X

P log
PTANPP

PmPP
=
∑
x∈X

P (x1, x2) log
P (x1, x2)

P (x1)P (x2)
≥ 0.

The last inequality follows from the fact the Kullback-Leibler divergence is
always positive.



Chapter 3

THEORY:
GENERALIZATION BOUNDS

Motivated by the analysis of the coherency constraints done in the previous
chapter, we further extend the understanding of learning algorithms by devel-
oping a data dependent approach which is used to derive generalization bounds
that depend on the margin distribution.

This chapter develops a learning theory that is relevant for learning in
very high dimensional spaces and uses it to establish informative general-
ization bounds, even for very high dimensional learning problems. The ap-
proach is motivated by recent works [Roth and Zelenko, 2000; Garg and Roth,
2001a; Arriaga and Vempala, 1999] that argue that some high dimensional
learning problems are naturally constrained in ways that make them, effec-
tively, low dimensional problems. In these cases, although learning is done in
a high dimension, generalization ought to depend on the true, lower dimen-
sionality of the problem.

In this chapter, we present our method, we analyzes it, and we use it to
develop new generalization bounds. We then evaluate the projection profile
based method experimentally on real data and show its effectiveness. Specif-
ically, we show that in many of the high dimensional problems (e.g. in the
natural language domain), our bound is tighter than the Vapnik-Chervonenkis
(VC) dimension or the fat-shattering based bound.

1. Introduction
The study of generalization abilities of learning algorithms and its depen-

dence on sample complexity is one of the fundamental research efforts in learn-
ing theory. Understanding the inherent difficulty of learning problems allows
one to evaluate whether learning is at all possible in certain situations, estimate
the degree of confidence in the predictions made by learned classifiers, and is
crucial in understanding and analyzing learning algorithms.
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Understanding generalization is even more important when learning in very
high dimensional spaces, as in many natural language and computer vision
applications. Specifically, can one count on the behavior of a 106 dimensional
classifier that is trained on a few examples, or even a few thousands examples?
Existing bounds are loose and essentially meaningless in these (and even in
simpler) cases1.

Technically, our approach builds on recent developments in the area of ran-
dom projection of high dimensional data [Johnson and Lindenstrauss, 1984]
which show, informally, that it is possible to project high dimensional data
randomly into a much smaller dimensional space, with a relatively small dis-
tortion of the distances between the projected points. This result is extended
here to apply in the context of a sample of points along with a linear classifying
hypothesis, and is used to develop generalization bounds for linear classifiers
in very high dimensional spaces. The basic intuition underlying our results
is as follows. If the effective dimensionality of the data is much smaller than
the observed dimensionality, then it should be possible to randomly project the
data into a lower dimensional space while, due to a small distortion in dis-
tances, incurring only a small amount of classification error, relative to what is
possible in the original, high dimensional space. Since the projected space has
low dimension, better “standard" generalization bounds hold there.

We introduce a new, data dependent, complexity measure for learning.
The projection profile of data sampled according to a distribution D, is the
expected amount of error introduced when a classifier h is randomly pro-
jected, along with the data, into k-dimensions. Although this measure seems
somewhat elusive, we show that it is captured by the following quantity:
ak(D, h) =

∫
x

∫∫
∈D u(x)dD, where

u(x) = min
(

3 exp
(
− (ν(x))2k

8(2 + |(ν(x))|)2
)

, 1
)

(3.1)

and ν(x) is the distance between x and the classifying hyperplane2 defined by
h, a linear classifier for D. The sequence P(D, h) = (a1(D, h), a2(D, h), . . .)
is the projection profile of D.

The projection profile turns out to be quite informative, both theoretically
and in practice. In particular, it decreases monotonically (as a function of k),
and provides a trade-off between dimension and accuracy. Namely, if the data
is transformed from n to k dimensions then we expect the amount of error
introduced to be ak(D, h). This new complexity measure allows us to state

1Several statistical methods can be used to ensure the robustness of the empirical error estimate [Kearns
et al., 1997]. However, these typically require training on even less data, and do not contribute to under-
standing generalization and the domain.
2Our analysis does not assume the data to be linearly separable.
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a generalization bound in terms of the lower-dimensional projected space -
the effective dimension of the data. We show that the overall performance
will depend on an estimation of the projection profile when projecting to the
effective dimension, with the addition of the standard, Vapnik-Chervonenkis
(VC)-dimension arguments, in the projected space.

Our approach suggests a significant improvement over current approaches
to generalization bounds, which are based either on VC theory [Vapnik, 1982]
and learning theory versions of Occam’s Razor [Blumer et al., 1989] or, more
recently, on the margin of a classifier with respect to a sample [Shawe-Taylor,
1998; Shawe-Taylor and Cristianini, 1999; Shawe-Taylor and Christianini,
2000; Herbrich and Graepel, 2001].

Although the development of margin-based bounds has been a significant
improvement, they still are not meaningful. The main shortcoming is that the
margin of the data might be defined by very few points of the distribution and
thus might be very small. Our method can be viewed as allowing an explicit
dependency on the distribution of the geometric distances of points from the
classifier, rather than only the extreme points. We refer to this distance as
the margin distribution of the data. In our method, the contribution of those
nearby “problematic” points to the generalization bound is weighted together
with their portion in the distribution. This is significant when most of the data
is far from the optimal classifier - only very few points, those that determine
the margin, are close to it. Our experiments reveal that this is indeed the case.
The advantage of our method is exhibited in Fig. 3.5, showing the margin dis-
tribution of data taken from a high dimensional natural language classification
problem [Golding and Roth, 1999]. Despite the zero margin in this case, our
method provides an informative bound.

2. Preliminaries
We study a binary classification problem f : �n → {−1, 1}. S =

{(x1, y1), . . . , (xm, ym)} denotes a sample set of m examples. The hypothesis
h ∈ �n is an n-dimensional linear classifier assumed, without losing general-
ity, to pass through the origin. That is, for an example x ∈ �n the hypothesis
predicts ŷ(x) = sign(hT x). Throughout the chapter, we use n to denote the
original (high) dimensionality of the data, k to denote the (smaller) dimension
into which projections are made and m to denote the sample size of the data.

Definition 3.1 The loss function considered is the 0-1 loss. Under this loss
function, the empirical error Ê of h over a sample set S and the expected error
E are given resp. by,

Ê(h, S) =
1
m

∑
i

I(ŷ(xi) �=�� yi)

E(h, S) = ExE
[
ŷ(x) �=�� f(x)

]
,
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where I(·) is the indicator function which is 1 when its argument is true and 0
otherwise. The expectation ExE is taken over the distribution of data.

We denote by || · || the L2 norm of a vector. Clearly, we can assume without
losing generality that all data points come from the surface of unit sphere (i.e.
∀x, ||x|| = 1), and that ||h|| = 1 (as the classification just depends on the sign
of the inner product). Under these assumptions, the classification output ŷ(x)
can be interpreted as the sign of the angle between the vectors x and h.

Let ν(x) = hT x denote the signed distance of the sample point x from the
classifier h. When x refers to the jth sample from the sample set S, we denote
it by νjν = ν(xj) = hT xj . With this notation (omitting the classifier h) the
classification rule reduces simply to sign(ν(x)).

Our method makes use of random projections, introduced in [Johnson and
Lindenstrauss, 1984] and studied intensively since then [Arriaga and Vempala,
1999; Indyk, 2001].

Definition 3.2 (Random Matrix) Let R be a k × n matrix where each
entry rij ∼ N(0, 1/k). R is called a random projection matrix. For x ∈ �n,
we denote by x′ = Rx ∈ �k the projection of x from an n to a k-dimensional
space using projection matrix R.

In a similar fashion, for a classifier h ∈ �n, h′ will denote its projection to a k
dimensional space via R (omitting k when clear from the context). Likewise,
S′ denotes the set of points which are the projections of the sample S, and
ν

′
jν = (h′)T x

′
j , the signed distance of the projected point from the projected

classifier.
Briefly, the method of random projection shows that with high probability,

when n dimensional data is projected down to a lower dimensional space of
dimension k, using a random k × n matrix, relative distances between points
are almost preserved. Formally:

Theorem 3.3 ([Arriaga and Vempala, 1999], Theorem 1) Let
u, v ∈ �n and let u′ and v′ be the projections of u and v to �k via a random
matrix R chosen as described above. Then, for any constant c,c

P

[
(1 − c) ≤ ||u′ − v′||2

||u − v||2 ≤ (1 + c)
]
≥ 1 − e−c2k/8, (3.2)

where the probability is over the selection of the random matrix R.

Note that if ||u|| = ||v|| = 1, then ||u − v|| = 2 − 2u · v. Therefore, the
above theorem can also be viewed as stating that, with high probability, random
projection preserves the angle between vectors which lie on the unit sphere.
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3. A Margin Distribution Based Bound
As mentioned earlier, the decision of the classifier h is based on the sign

of ν(x) = hT x. Since both h and x are normalized, |ν(x)| can be thought of
as the geometric distance between x and the hyperplane orthogonal to h that
passes through the origin. Given a distribution on data points x, this induces
a distribution on their distance from the hyperplane induced by h, which we
refer to as the margin distribution.

Note that this is different from the margin of the sample set S with respect
to a classifier h. Traditionally in the learning community, margin of a sample
set S (referred to simply as “the margin”) is the distance of the point which is
closest to the hyperplane. Formally, the margin of S with respect to h is given
by:

γ(S, h) = min
i∈{1,...,m}

|hT xi|. (3.3)

Consider a scenario in which one learns a classifier in a very high dimensional
space (typical in image processing, language processing, and data mining ap-
plications). According to existing theory, in order to learn a classifier which,
with high confidence, performs well on previously unseen data, one needs to
train it on a large amount of data. In what follows, we develop alternative
bounds that show that if “many” of the high dimensional points are classified
with high confidence, that is, |hT x| is large for these, then one does not need
as many points as predicted by VC-theory or margin based theory. The main
result of the chapter formalizes this insight and is given in the following theo-
rem.

Theorem 3.4 Let S = {(x1, y1), . . . , (x2m, y2m)} be a set of n-
dimensional labeled examples and h a linear classifier. Then, for all constants
0 < δ < 1; 0 < k, with probability at least 1 − 4δ, the expected error of h is
bounded by

E ≤ Ê(S, h) + min
k

⎧⎨⎧⎧⎩⎨⎨µk + 2

√
(k + 1) ln me

k+1 + ln 1
δ

2m

⎫⎬⎫⎫⎭⎬⎬ (3.4)

where µk = 6
mδ

2m∑
j=1

exp
(
− ν2

jν k

8(2+|νjν |)2
)

, and νjν = ν(xj) = hT xj .

3.1 Proving the Margin Distribution Bound
The bound given in Eqn 3.4 has two main components. The first component,

µk, is the distortion incurred by the random projection to dimension k, and the
second follows directly from VC theory for this dimension.

Recall that the random projection theorem states that relative distances are
(almost) preserved when projecting to lower dimensional space. Therefore,
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we first argue that the image, under projection, of data points that are far from
h in the original space, will still be far from its image in the projected (k
dimensional) space. The first term quantifies the penalty incurred due to data
points whose images will not be consistent with the image of h. That is, this
term bounds the empirical error in the projected space. Once the data lies in
the lower dimensional space, we can bound the expected error of the classifier
on the data as a function of the dimension of the space, number of samples and
the empirical error there (that is, the first component).

Decreasing the dimension of the projected space implies increasing the con-
tribution of the first term, while the VC-dimension based term decreases. To
get the optimal bound, one has to balance these two quantities and choose the
dimension k of the projected space so that the generalization error is mini-
mized. We will use the following lemmas to compute the penalty incurred
while projecting the data down to k dimensional space.

Lemma 3.5 Let h be an n-dimensional classifier, x ∈ �n a sample point,
such that ||h|| = ||x|| = 1, and ν = hT x. Let R ∈ �k×n be a random projec-
tion matrix (Definition 3.2), with h′ = Rh, x′ = Rx. Then, the probability of
misclassifying x, relative to its classification in the original space, due to the
random projection, is

P
[
sign(hT x) �=�� sign(h′T x′)

]
≤ 3 exp

(
− ν2k

8(2 + |ν|)2
)

. (3.5)

Proof. From Theorem 3.3 we know that with probability at least

Z(c) = 1 − 3 exp
(
−c2k

8

)
we have

(1 − c)||h||2 ≤ ||h′||2 ≤ (1 + c)||h||2,

(1 − c)||x||2 ≤ ||x′||2 ≤ (1 + c)||x||2,

(1 − c)||h − x||2 ≤ ||h′ − x′||2 ≤ (1 + c)||h − x||2.

Since ||h|| = ||x|| = 1, and setting ν = hT x, ν′ = h′T x′, we have

||h − x||2 = ||h||2 + ||x||2 − 2hT x = 2 − 2ν.

||h′ − x′||2 = ||h′||2 + ||x′||2 − 2ν ′.

Which, along with the above inequalities gives,

||h′||2 + ||x′||2 − 2ν ′ ≤ (1 + c)(2 − 2ν).
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This implies,

ν ′ ≥ ||h′||2 + ||x′||2
2

− (1 + c)(1 − ν)

≥ (1 − c) − (1 + c)(1 − ν)
= c(ν − 2) + ν.

Thus, when ν > 0 we have ν ′ > 0 if c(ν − 2) + ν > 0. This implies that we
need ν/(2 − ν) > c.
Similarly,

||h′||2 + ||x′||2 − 2ν ′ ≥ (1 − c)(2 − 2ν).

Thus,

ν ′ ≤ ||h′||2 + ||x′||2
2

− (1 − c)(1 − ν)

≤ 1 + c − 1 + c + ν(1 − c)
= 2c + ν(1 − c)
= c(2 − ν) + ν.

In particular, if ν < 0 then ν ′ < 0 if c(2 − ν) + ν < 0, which implies
c < −ν/(2 − ν).

Combining the above two inequalities, we conclude that ν and ν ′ have the
same sign if c < |ν|/(2 + |ν|). Namely, the required probability is

P
[
sign(hT x) �=�� sign(h′T x′)

]
≤ 1 − Z

( |ν|
2 + |ν|

)
= 3 exp

(
− ν2k

8(2 + |ν|)2
)

,

which is obtained by picking c = |ν|/(2 + |ν|).
Next, we define the projection error for a sample – this is essentially the

projection profile introduced in Section 3.1 for a finite sample. A natural inter-
pretation of the projection error is that it is an estimate of the projection profile
obtained by sampling the data with respect to a fixed classifier.

Definition 3.6 (Projection Error) Given a classifier h, a sample S, and
a random projection matrix R, let Errprojr (h, R, S) be the classification error
caused by the projection matrix R. Namely,

Errprojr (h, R, S) =
1
|S|
∑
x∈S

I(sign(hT x) �=�� sign(h′T x′)).
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Lemma 3.7 Let h be an n-dimensional classifier, R a random projection ma-
trix, and a sample of m points

S =
{

(x1, y1), . . . , (xm, ym)
∣∣∣∣∣∣∣xi ∈ �n, yi ∈ {0, 1}

}
.

Then, with probability ≥ 1−δ (over the choice of the random projection matrix
R), the projection error satisfies Errprojr (h, R, S) ≤ ε1(S, δ), where

ε1(S, δ) =
1
m

1
δ

m∑
i=1

3 exp
(
− ν2

iν k

8(2 + |νiνν |)2
)

, (3.6)

νiνν = hT xi, for i = 1, . . . ,m.

Proof. Let Z be the expected projection error of a sample where the expecta-
tion is taken with respect to the choice of the projection matrix. That is,

Z = E
[
Errprojr (h, R, S)

]
= E

[
1
|S|
∑
x∈S

I(sign(hT x) �=�� sign(h′T x′))

]

=
1
m

∑
x∈S

E
[
I(sign(hT x) �=�� sign(h′T x′))

]
=

1
m

∑
x∈S

P
[
sign(hT x) �=�� sign(h′T x′)

]
≤ 1

m

∑
x∈S

3 exp
(
− ν2

iν k

8(2 + |νiνν |)2
)

= δε1(S, δ),

which follows by linearity of expectation and Lemma 3.5. Now, using Markov
inequality,

P

[
Errprojr (h, R, S) ≥ Z

δ

]
≤ δ,

which establishes the lemma, as Z/δ ≤ ε1(S, δ).

Lemma 3.8 Let S1, S2 be two samples of size m from �n, R a random pro-
jection matrix, and S′

1, S
′
2 the projected sets. Then, with probability ≥ 1 − 2δ,

P
[∣∣∣∣∣∣∣Ê(h, S1) − Ê(h, S2)

∣∣∣∣∣∣∣ > ε
]

< P
[∣∣∣∣∣∣∣Ê(h′, S′

1) − Ê(h′, S′
2)
∣∣∣∣∣∣∣ > ρ

]
,

where ρ = ε − ε1(S1, δ) − ε1(S2, δ).



A Margin Distribution Based Bound 53

Proof. Applying the result of the Lemma 3.7 on sample sets S1, S2, we obtain
that with probability at least 1 − 2δ, we have∣∣∣∣∣∣∣Ê(h, S1) − Ê(h′, S′

1)
∣∣∣∣∣∣∣ < ε1(S1, δ), and∣∣∣∣∣∣∣Ê(h, S2) − Ê(h′, S′

2)
∣∣∣∣∣∣∣ < ε1(S2, δ).

Using simple algebra, we obtain,∣∣∣∣∣∣∣Ê(h, S1) − Ê(h, S2)
∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣Ê(h, S1) − Ê(h′, S′
1)
∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣Ê(h′, S′

1) − Ê(h′, S′
2)
∣∣∣∣∣∣∣

+
∣∣∣∣∣∣∣Ê(h′, S′

2) − Ê(h, S2)
∣∣∣∣∣∣∣

≤ ε1(S1, δ) + ε1(S2, δ) +
∣∣∣∣∣∣∣Ê(h′, S′

1) − Ê(h′, S′
2)
∣∣∣∣∣∣∣ .

In particular, with probability ≥ 1 − 2δ,

P
[∣∣∣∣∣∣∣Ê(h, S1) − Ê(h, S2)

∣∣∣∣∣∣∣ > ε
]

≤ P
[
ε1(S1, δ) + ε1(S2, δ) +

∣∣∣∣∣∣∣Ê(h′, S′
1) − Ê(h′, S′

2)
∣∣∣∣∣∣∣ > ε

]
= P

[∣∣∣∣∣∣∣Ê(h′, S′
1) − Ê(h′, S′

2)
∣∣∣∣∣∣∣ > ε − ε1(S1, δ) − ε1(S2, δ)

]
.

We have obtained a bound on the additional classification error that is in-
curred when projecting the sample down from some n dimensional space to a k
dimensional space. As a result, we have established the fact that the difference
between the classification performance on two samples, in high dimension, is
very similar to the difference in low dimension. This is now used to prove the
main result of the chapter.

Proof. (Theorem 3.4) Let S1 denote a sample of size m from �n. Let H
denotes the space of all linear classifiers in n dimensional space and let h ∈ H.
Also, let E(h) denote the expected error of a classifier h, on the data sampled
according to distribution D and Ê(h, S1), the empirical (observed) error of the
same classifier, h, on the sample set S1 when the data was sampled according
to the same distribution D.

To obtain the generalization error of a classifier which is learned in a high
dimensional space, we want to compute the bound on the following quantity
as a function of the error ε:

P

[
sup
h∈H

∣∣∣∣∣∣∣E(h) − Ê(h, S1)
∣∣∣∣∣∣∣ > ε

]
. (3.7)

We are interested in the probability that uniformly all classifiers from the hy-
pothesis space H will do well on future data. To compute the bound, we use
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the technique of double samples which has been used in proving bounds of this
kind. Assume we observe a sample of size 2m, where S1, S2 denote the first
and second half of sample resp. From [Vapnik, 1998, 131–133]:

P

[
sup
h∈H

∣∣∣∣∣∣∣E(h)−Ê(h, S1)
∣∣∣∣∣∣∣>ε

]
≤2P

[
sup
h∈H

∣∣∣∣∣∣∣Ê(h, S1)−Ê(h, S2)
∣∣∣∣∣∣∣> ε

2

]
.

Now suppose we project the data along with the hyperplane down to k dimen-
sional space, using a random projection matrix. Then according to Lemma 3.8,
with high probability most of the data stays on the correct side of the hyper-
plane. Formally, with probability ≥ 1 − 2δ,

P

[
sup
h∈H

∣∣∣∣∣∣∣Ê(h, S1)−Ê(h, S2)
∣∣∣∣∣∣∣>ε

2

]
≤P

[
sup
h∈H

∣∣∣∣∣∣∣Ê(h′, S′
1)−Ê(h′, S′

2)
∣∣∣∣∣∣∣>ρ

]
,

where ρ = ε
2 − ε1(S1, δ) − ε1(S2, δ).

Since the sample sets S1, S2 contains independent samples so do S′
1, S

′
2, and

using results from [Vapnik, 1998, p. 134] we write

P

[
sup
h∈H

∣∣∣∣∣∣∣Ê(h′, S′
1)−Ê(h′, S′

2)
∣∣∣∣∣∣∣>ρ

]
= P

[
sup

h′∈H′

∣∣∣∣∣∣∣Ê(h′, S′
1)−Ê(h′, S′

2)
∣∣∣∣∣∣∣>ρ

]
≤
∑

h′∈H′
P
[∣∣∣∣∣∣∣Ê(h′, S′

1)−Ê(h′, S′
2)
∣∣∣∣∣∣∣>ρ
]

≤ Nk(2m) exp(−2ρ2m)

≤
(

2em

k + 1

)k+1

exp(−2ρ2m),

where Nk(2m) is the maximum number of different partitions of 2m samples
of k dimensional data that can be realized by a k dimensional linear classifier.
The last inequality uses the Sauer’s lemma to bound this quantity as a function
of the VC dimension of a classifier which in this case happens to be (k + 1).
To bound this probability by δ, the confidence parameter, we isolate ρ from the

inequality, which gives
(

2em
k+1

)k+1
exp(−2ρ2m) ≤ δ. Simplification reveals

that this inequality holds for

ρ =

√√√√√√√√√√(k + 1) ln
(

2em
k+1

)
+ ln

(
1
δ

)
2m

.

Solving for ε, we have ε = 2ρ + 2ε1(S1, δ) + 2ε1(S2, δ). Putting it together,
we get

P

[
sup
h∈H

∣∣∣∣∣∣∣E(h) − Ê(h, S1)
∣∣∣∣∣∣∣ > ε

]
≤ 2δ.
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Combining this, together with the bound on the confidence that Eq. (3.7) holds,
we get that with probability ≥ (1 − 2δ)(1 − 2δ) ≥ 1 − 4δ, we have

E(h, S1) ≤ Ê(h, S1) + ε

≤ Ê(h, S1) + 2ε1(S1, δ) + 2ε1(S2, δ)

+2

√√√√√√√√√√(k + 1) ln
(

2em
k+1

)
+ ln

(
1
δ

)
2m

.

Plugging in the value of ρ along with the value of ε1(·, ·), gives the final bound.

In fact, it is possible to improve the bound for some ranges of k, using the
fact that we only care about the distortion in the distance of points from the
classifier, rather than the distortion in the size of the projected vectors them-
selves, as in Lemma 3.5. This is formalized next.

Lemma 3.9 Let x′ = Rx and h′ = Rh. Let ν = hT x and ν ′ = h′T x′, where
R is n × k random projection matrix. Then, we have

E[ν ′] = ν and var[ν ′] =
1 + ν2

k
. (3.8)

Proof. Let R = {r1, r2, ..., rk}, where ri are the row vectors (see Defini-
tion 3.2). Then, ν ′ = h′T x′ =

∑k
i=1 hT rir

T
i x. Let ν ′

iν = hT rir
T
i x. Clearly,

the ν ′
iν s are independent random variables, and we can express ν ′ =

∑k
i=1 ν ′

i

as the sum of independent random variables. Furthermore,

E[ν ′
iν ] = E[hT rir

T
i x] = hT E[rir

T
i ]x = hT (I/k)x = hT x = ν/k,

where I is the identity matrix. This holds as each entry of the random pro-
jection matrix is ∼ N(0, 1/k), and thus the matrix E[rir

T
i ] has zero in each

non-diagonal entry, as it is the expectation of the product of two independent
variables, each of expectation zero, and the value of a diagonal entry is the sec-
ond moment of N(0, 1/k), which is 1/k. In particular, E[ν ′] = E[

∑
i ν

′
iν ] = ν.

We next compute var[ν ′
i]. Let ri = [µ1, . . . , µn], where µj ∼ N(0, 1/k).

Then:

E[ν ′
iν
2] = E[(hT rir

T
i x)2]

= E[(hT rir
T
i x)(hT rir

T
i x)]

=
n∑

a=1

n∑
b=1

n∑
c=1

n∑
d=1

xaxbhchdE[µaµbµcµd].

Note, that if a is not equal to either b, c, or d, then E[µaµbµcµd] =
E[µa]E[µbµcµd] = 0 · E[µbµcµd], as µa is independent of µb, µc, µd. We
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can apply the same argumentation to b, c, and d. It follows, thus, that the only
non-zero terms in the above summation are when: (i) a = b and c = d, or (ii)
a = c and b = d, or (iii) a = d and b = c (note that the case a = b = c = d is
counted three times in those cases). Thus

E
[
ν ′

iν
2
]

=
n∑

a=1

n∑
c=1

xaxahchcE[µaµaµcµc] +
n∑

a=1

n∑
b=1

xaxbhahbE[µaµbµaµb]

+
n∑

a=1

n∑
b=1

xaxbhbhaE[µaµbµbµa] − 2
n∑

a=1

xaxahahaE[µaµaµaµa].

We observe that E[µ2
u] = 1/k and E[µ4

u] = 3/k2. Thus, E[µ2
aµ

2
b ] = 1/k2 if

a �=�� b and E[µ2
aµ

2
b ] = 3/k2 if a = b. Thus,

E
[
ν ′

iν
2
]

≤ 1
k2

n∑
a=1

n∑
c=1

xaxahchc +
1
k2

n∑
a=1

n∑
b=1

xaxbhahb

+
1
k

++
2

n∑
a=1

n∑
b=1

xaxbhbha+3
2
k2

n∑
a=1

xaxahaha−2
3
k2

n∑
a=1

xaxahaha

=
1
k2

(||x||2||h||2 + 2||xh||2) =
1 + 2ν2

k2
,

as ||x|| = ||h|| = 1. Finally,

var
[
ν ′

iν
]

= E
[
ν ′

iν
2
]
−
(
E
[
ν ′

iν
])2

=
1 + 2ν2

k2
− ν2

k2

=
1 + ν2

k2
.

We conclude that var[ν ′] = k · var[ν ′
iν ] = 1+ν2

k .

Using Chebyshev bound we get:

Lemma 3.10 Let R be a random projection matrix as in Definition 3.2, x′ =
Rx, h′ = Rh, ν = hT x, ν′ = h′T x′. Then,

P
[
sign(ν) �=�� sign(ν ′)

]
≤ 2

kν2
.

Proof. Using the Chebyshev bound, we know that

P

[
|ν ′ − E[ν ′]| ≥ ε

σ(ν ′)
σ(ν ′)

]
≤ (σ(ν ′))2

ε2
, (3.9)

where σ(ν ′) is the standard deviation of ν ′. Plugging in the bounds of
Lemma 3.9, we have

P
[
|ν ′ − ν| ≥ ε

]
≤ 2

kε2
. (3.10)
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Now, the sign(ν) �=�� sign(ν ′) only if |ν ′ − ν| ≥ |ν|. Which implies that

P
[
sign(ν) �=�� sign(ν ′)

]
≤ P (|ν ′ − ν| > |ν|) ≤ 2

kν2
. (3.11)

Note that the difference between this and the result in Lemma 3.5 is that
there we used the Chernoff bound, which is tighter for large values of k. For
smaller values of k the above result will provide a better bound.

This result can be further improved if the random projection matrix used
has entries in {−1, +1}, using a variation of Lemma 3.9 along with a recent
result [Achlioptas, 2001].

4. Analysis
Based on Lemma 3.5 and Lemma 3.10, the expected probability of error for

a k-dimensional image of x, given that the point x is at distance ν(x) from the
n-dimensional hyperplane (where the expectation is with respect to selecting a
random projection) is given by

min
(

3 exp
(
− (ν(x))2k

8(2 + |(ν(x))|)2
)

,
2

kl2
, 1
)

. (3.12)

This expression measures the contribution of the point to the generalization
error, as a function of its distance from the hyperplane (and for a fixed k).
Figure 3.1 shows this term (Eqn 3.12) for different values of k. This bell shaped
curve, depicting the results, exhibits that all points have some contribution to
the error, and the relative contribution of a point decays exponentially fast as a
function of its distance from the hyperplane. Given the probability distribution
over the instance space and a fixed classifier, one can compute the distribution
over the margin which is then used to compute the projection profile of the data
as ∫

x

∫∫
∈D

min
(

3 exp
(
− (ν(x))2k

8(2 + |(ν(x))|)2
)

,
2

kl2
, 1
)

dD. (3.13)

Consider, for example, the case when the distribution over the distance of the
points from the hyperplane, Dl is normal with mean µl and variance σl (since
the distance is bounded in [0, 1], for the analysis we need to make sure that
means and variances are such that no points lies outside this region). In this
case, the projection profile can be computed analytically. Figure 3.2 shows
the bound for this case (mean = 0.3, variance = 0.1) as a function of k (the
projected dimension of the data) and compares the VC-dimension term with
the random projection term. It is evident that when the dimension of the data is
very small, it is better to consider the VC-dimension based bounds but as soon
as the dimension of the data increases, the VC-dimension term is much larger.
Our bound can be thought of as doing a tradeoff between the two terms.
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Figure 3.1. The contribution of data points to the generalization error as a function of their
distance from the hyperplane.
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Figure 3.2. The bound obtained when the margin has a normal distribution. It shows the
tradeoff between the VC-dimension and the random projection terms in the bound
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4.1 Comparison with Existing Bounds
The most basic generalization bound is the one derived from VC-

theory [Blumer et al., 1989]. The true error of an n-dimensional linear classi-
fier whose empirical error on a sample of size m is ε̂ is bounded, with proba-
bility at least 1 − δ by,

ε ≤ ε̂ +

√
(n + 1)(ln( 2m

n+1) + 1) − ln δ
4

m
, (3.14)

where we use the fact that the VC-dimension of a linear classifier is n+1. This
bound is very general and gives the worst case generalization performance of
the classifier. It depends only on the number of samples and the dimensionality
of the data.

Shawe-Taylor [Shawe-Taylor, 1998] and Shawe-Taylor and Cristian-
ini [Shawe-Taylor and Cristianini, 1999] have explored a new direction in
which the margin of the data is used to derive bounds on the generalization
error. Their bound depends on the fat-shattering function, afat, a generaliza-
tion of the VC dimension, introduced in [Kearns and Schapire, 1994]. For
sample size m the bound is given by:

ε ≤ 2
m

(
f log2(32m) log2

8em

f
+ log2

8m

δ

)
, (3.15)

where f = afat(δ/8) and δ is the minimum margin of data points in the sample.
For linear functions this is bounded by (BR/δ)2, where B is the norm of the
classifier and R is the maximal norm of the data.

It is useful to observe the key difference between these two bounds; while
the former depends only on the space in which the data lies and is totally inde-
pendent of the actual data, the latter is independent of this space and depends
on the performance (margin) of the classifier on the given data.

The new bound proposed here can be thought of as providing a link between
the two existing bounds described above. The first component is a function of
the data and independent of the true dimension whereas the second component
is a function of the projected dimension of the data.

In most cases, the bounds in Eqs. 3.14 and 3.15 are weak in the sense that
the amount of data required before the bound is meaningful (< 0.5) is huge.
For the VC-dimension based bounds, for example, the amount of data required
for a meaningful bound is at least 17 times the dimension of the data. This
is not feasible in many natural language processing and computer vision tasks
where data dimensionality may be very high [Roth, 1998]. Figure 3.3 provides
some quantitative assessment of these claims. It gives the number of samples
required before the fat-shattering bound is meaningful (< 0.5). This shows
that even for the case when the margin is 0.9, almost a hundred thousand points
need to be observed before the bounds are useful.
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Figure 3.3. The number of sample points required before the fat-shattering bound in Eqn 3.15
is meaningful, as a function of margin. Here the logarithm is in base 10.
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Schapire et al. [Schapire et al., 1997] have developed bounds explaining
the good performance of the voting methods. They have argued that the good
performance of boosting based classifiers can be attributed to large margin of
the learned classifier and have derived bounds based on the margin of the data.
Their bound is

ε ≤ PSPP [ν ≤ θ] + O

⎛⎝⎛⎛ 1√
m

(
d log2

(
m
d

)
θ2

+ log
(

1
δ

))1/2
⎞⎠⎞⎞ . (3.16)

There is a striking similarity between our bound and this. The first term in their
bound assumes that we make error on all points which have margin less than
θ, whereas in our case, the projection profile defines the amount of error that is
made. The second term of their bound gives the generalization error when the
classification is done with a good margin.

We compared this bound to the random projection bound on simulated data.
We generated the data according to the concept (r−m−n) threshold function.
The results are shown in Figure 3.4. In this experiment, 50, 000 training points
are assumed. The figure also shows the VC-bound for this data.

We also compared the performance of the new bound with respect to the
existing bounds on some real problems. In the first experiment, we considered
17000 dimensional data taken from the problem of context sensitive spelling
correction [Golding and Roth, 1999]. A winnow based algorithm, which was
shown very successful on this problem, was used to learn a linear classifier.
Figure 3.5 shows the histogram of the distance of the data with respect to the
learned classifier. It is evident that a large number of data points are very
close to the classifier and therefore the fat-shattering bounds are not useful.
At the same time, to gain confidence from the VC-dimension based bounds,
we need over 120, 000 data points. Figure 3.5 shows the random projection
term for this case; this term is below 0.5 already after 2000 samples and thus
for the overall bound to be small, we need much less examples as compared
to the VC-dimension case. The second experiment, considered the problem
of face detection. A Radial Basis Function (RBF) kernel was used to learn
the classifier. Figure 3.6(a) shows the histogram of the margin of the learned
classifier and Figure 3.6(b) gives the random projection term as a function of
the dimension of the data.
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Figure 3.5. (a) Histogram of the distance of the points from the classifier for the context sen-
sitive spelling correction. (b) The distortion error due to random projection as a function of the
dimension of the projected space.
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Figure 3.6. (a) Histogram of the distance of the points from the classifier for the face detection
experiment. (b) The distortion error due to random projection as a function of the dimension of
the projected space.
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5. Summary
We have presented a new analysis method for linear learning algorithms that

uses random projections and margin distribution analysis. The main contribu-
tion of the chapter are:

1 using this method to develop a new data dependent complexity measure for
learning, and

2 introducing a bound on the true error of a learning algorithm, as a function
of the margin distribution of the data relative to the learned classifier.

While the random projection method was used in this chapter as an analysis
tool, one of the main direction of future research is to investigate algorithmic
implications of the ideas presented here. In addition, we plan to study the
bounds on real data sets and develop a better understanding of the projection
profile introduced here.



Chapter 4

THEORY:
SEMI-SUPERVISED LEARNING

Many pattern recognition and human computer interaction applications re-
quire the design of classifiers. classifiers are either designed from expert
knowledge or from training data which can be either labeled or unlabeled. In
many applications, obtaining fully labeled training sets is a difficult task since
labeling is done using human expertise, which is expensive, time consuming,
and error prone. Obtaining unlabeled data is usually easier since it involves the
collection of data that are known to belong to one of the classes without having
to label it.

In this chapter, we discuss training probabilistic classifiers with labeled and
unlabeled data. This method of learning is known as semi-supervised learning.
We provide a new analysis that shows under what conditions unlabeled data
can be used in learning to improve classification performance. We also show
that if the conditions are violated, using unlabeled data can be detrimental to
classification performance.

In Chapter 7, we will discuss the implications of this analysis to a specific
type of probabilistic classifiers, Bayesian networks, and we will present a new
structure learning algorithm that can utilize unlabeled data to improve classifi-
cation. Later, in Chapters 10 and 11 we show how the resulting algorithms are
successfully employed in two applications related to human computer interac-
tion and pattern recognition: facial expression recognition and face detection.

1. Introduction
Is there value to unlabeled data in supervised learning of classifiers? This

fundamental question has been increasingly discussed in recent years, with a
general optimistic view that unlabeled data hold great value. Citing an increas-
ing number of applications and algorithms successfully utilizing unlabeled
data [Blum and Mitchell, 1998; Nigam et al., 2000; Shahshahani and Land-
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grebe, 1994a; Baluja, 1998; Bruce, 2001; Bennett and Demiriz, 1998; Ghani,
2002; Seeger, 2001] further magnified by theoretical content proving of the
value of unlabeled data in certain cases [Castelli, 1994; Ratsaby and Venkatesh,
1995; Cooper and Freeman, 1970; O’Neill, 1978], semi-supervised learning is
seen optimistically as a learning paradigm that can relieve the practitioner from
the need to collect many expensive labeled training data.

However, several disparate empirical evidence in the literature suggest that
there are situations in which the addition of unlabeled data to a pool of labeled
data, causes degradation of the classifier’s performance [Nigam et al., 2000;
Shahshahani and Landgrebe, 1994a; Baluja, 1998; Bruce, 2001], in contrast
to improvement of performance when adding additional labeled data. In this
chapter, we provide an analysis of semi-supervised learning using maximum
likelihood estimators which explains all the results seen in the literature: when
unlabeled data improves and degrades performance.

Our analysis is based on classifiers represented by a distribution, who’s pa-
rameters are estimated from data and plugged into the optimal decision rule
(Section 4.2). The assumed parametric family of the classifier leads to the def-
inition of correct and incorrect models. The existing literature (Section 4.3)
is generally optimistic regarding the positive use of unlabeled data, however,
existing theoretical results always assumed that the model is correct. The ques-
tion is what happens when the model is not correct. We answer this question
by providing the unified asymptotic properties of maximum likelihood (ML)
estimation (Section 4.5). When the model is correct, the asymptotic properties
of ML coincide with existing theoretical results, showing that unlabeled data
can always be used profitably to learn a classifier. When the model is incorrect,
the properties suggest that ML estimators suffer from an odd lack of robust-
ness with respect to the ratio between labeled and unlabeled data. As the ratio
between labeled and unlabeled data changes, so do the asymptotic estimates
of the classifier’s parameters and the estimation bias from the true data gen-
erating distribution. We show, using examples, that the increase in estimation
bias leads to an increase in classification error with unlabeled data. The exam-
ples prove that unlabeled data can degrade performance with incorrect models,
even if numerical problems are removed.

With finite training data the situation becomes slightly more complex. Ex-
periments with artificial and real data sets show that unlabeled data will usually
degrade performance when incorrect models are assumed, and will improve
performance with correct modeling assumptions (Section 4.6). However, there
are cases with incorrect models where unlabeled data are observed to improve
the classification performance. We show experiments of such cases, arguing
that the most probable cause is the fact that the decrease in variance when
adding unlabeled data has a greater effect than the increase in bias, especially
when there are a large number of parameters to estimate and a very small num-
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ber of labeled data. This explanation could explain some of the existing suc-
cesses in the literature.

Leveraging on the properties of semi-supervised learning with incorrect
models, we suggest that unlabeled data can be used for validating modeling
assumptions (Section 4.6.4); observing that unlabeled data degrade a classi-
fier’s performance is a strong indication that the assumed model is incorrect.

2. Properties of Classification
We briefly repeat (with some change of notation) the definitions and prop-

erties of classification given previously in Chapter 2. The goal is to classify an
incoming vector of observables X. Each instantiation of X is a sample. There
exists a class variable C; the values of C are the classes. Let P (C,X) be
the true joint distribution of the class and features from which any a sample of
some or all of the variables from the set {C,X} is drawn, and p(C,X) be the
density distribution associated with it. We want to build classifiers that receive
a sample x and output either one of the values of C.

We assume 0-1 loss and consequently, the objective is to minimize the prob-
ability of classification error. The optimal classification rule, under the 0-1 cost
function, is the maximum a-posteriori (MAP) rule [Devroye et al., 1996]:

g∗(x) = maxc′
[
p
[[ (

C = c′|x)] , (4.1)

where c′ goes over all values of C and p(C|X) is the a-posteriori distribution
of C which could be computed from the joint distribution using

p
(
C = c′|x) =

p(C = c,X = x)
p(X = x)

.

An error is made when g∗(x) �=�� c, where c is the true label of the sample
x. The maximum a-posteriori (MAP) decision rule is optimal in the sense that
for every tuple (c,x) and any other classifier g(x) which maps x to the class
labels the following holds [Devroye et al., 1996]:

P (g∗(x) �=�� c) ≤ P (g(x) �=�� c) . (4.2)

The decision rule g∗(x) is called the Bayes rule and eB = P (g∗(X) �=�� C)
is known as the Bayes error (or Bayes risk), and is the minimum probability
of error achievable for the given classification problem. No other classification
rule can achieve a lower error.

The Bayes error is achievable when the a-posteriori probability p(C|X) is
available (or g∗(x)). In reality, neither p(C|X) nor g∗(x) are known, thus, we
try to estimate p(C|X) from data (of size N ). We assume a parametric model
P (C,X|θ), with parameters θ defined in a compact subset of Euclidean space
denoted by Θ. An estimate of θ is denoted by θ̂N . The process of estimating
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θ̂N is the learning rule. Given p
(
C|X, θ̂N

)
, the probability density induced by

the parametric model, the estimates are plugged into the optimal classification
rule:

gθ̂N
(x) = max

c′

[
p
[[ (

C = c′|x, θ̂N

)]
, (4.3)

with an associated probability of error given by e(θ̂) = P
(
gθ̂N

(X) �=�� C
)

.

Clearly, eB ≤ e(θ̂N ) for any size of training data N . A consistent learning rule
is one that yields limN→∞E[e(θ̂N )] = eB, and thus can achieve the Bayes
error as the size of the training set increases.

If the distribution P (C,X) belongs to the family P (C,X|θ), we say the
“model is correct”; otherwise we say the “model is incorrect.”

When the model is correct, the difference between the expected value Eθ

[
θ̂
]

and the true parameter set, denoted as θ
, is called the estimation bias. When
the estimation bias is zero, the estimator θ̂N is unbiased, and when the estima-
tion bias goes to 0 as N approaches infinity, the estimator is consistent. In both
cases, the learning rule is also consistent (i.e., the estimated classifier achieves
the Bayes error rate).

When the model is incorrect, we denote bias loosely to be the the distance

between P (C,X) and the estimated P
(
C,X|θ̂

)
. Different distance measures

can be used, such as mean square error, Kullback-Leiber (KL) divergence and
others. In the framework of maximum likelihood estimators, the relevant dis-
tance is the KL divergence.

The difference between the expected value of e(θ̂) and eB is called classifi-
cation bias. When the model is correct and for a consistent learning rule, the
bias is zero. When the model is incorrect, there exists a θ for which the clas-
sification bias is minimized. The bias is generally not zero, although it could
be zero for some cases. We discuss the relationship between classification bias
and estimation bias in the following sections.

3. Existing Literature
The existing literature presents several empirical and theoretical findings

that indicate the positive value of unlabeled data. Cooper and Freeman were
optimistic enough about unlabeled data so as to title their work as “On the
asymptotic improvement in the outcome of supervised learning provided by
additional nonsupervised learning” [Cooper and Freeman, 1970]. Other early
studies, such as [Hosmer, 1973; O’Neill, 1978] further strengthened the asser-
tion that unlabeled data should be used whenever available.

Castelli and Cover [Castelli, 1994; Castelli and Cover, 1995; Castelli and
Cover, 1996] and Ratsaby and Venkatesh [Ratsaby and Venkatesh, 1995] con-
sider situations where unlabeled samples are used to estimate the decision re-
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gions (by estimating the form of p(C,X)) and labeled samples are used solely
to determine the labels of each decision region. This procedure is called “Al-
gorithm M” by Ratsaby and Venkatesh; they use probably approximately cor-
rect (PAC)-learning to prove that Algorithm M requires exponentially more
unlabeled samples than labeled samples to obtain a given classification perfor-
mance for models in the exponential family. Castelli and Cover work directly
from optimal Bayesian procedures and do not take the detour of “plug-in” es-
timation procedures. They prove that Algorithm M is asymptotically optimal
under various assumptions. The main message of their work is that, asymptot-
ically, labeled data contribute exponentially faster than unlabeled data to the
reduction of classification error. Krishnan and Nandy [Krishnan and Nandy,
1990a; Krishnan and Nandy, 1990b] extened the results of [Ganesalingam and
McLachlan, 1978] to provide efficiency results for discriminant and logistic-
normal models for samples that are labeled stochastically.

It should be noted that such previous theoretical work makes the critical
assumption that p(C,X) belongs to the family of models p(C,X|θ) (that is,
the “model is correct”).

There has been plenty of recent applied work with semi-supervised learn-
ing. Shahshahani and Landgrebe describe classification improvements with
unlabeled spectral data [Shahshahani and Landgrebe, 1994a]; Mitchell and co-
workers report a number of approaches to extract valuable information from
unlabeled data, from variations of maximum likelihood estimation [Nigam
et al., 2000] to co-training algorithms [Mitchell, 1999]. Other publications
report on EM-like algorithms [Baluja, 1998; Bruce, 2001; Miller and Uyar,
1996] and co-training approaches [Collins and Singer, 2000; Comite et al.,
1999; Goldman and Zhou, 2000]. There have also been workshops on the
labeled-unlabeled data problem (at NIPS1999, NIPS2000, NIPS2001, and IJ-
CAI2001). Overall, these publications and meetings advance an optimistic
view of the labeled-unlabeled data problem, where unlabeled data can be prof-
itably used whenever available.

However, a more detailed analysis of current empirical results does reveal
some puzzling aspects of unlabeled data. Four results are particularly interest-
ing:

1 Shahshahani and Landgrebe [Shahshahani and Landgrebe, 1994a] report
experiments where unlabeled data degraded performance. They attribute
such cases to deviations from modeling assumptions, such as outliers and
“samples of unknown classes” — they even suggest that unlabeled samples
should be used with care, and only when the labeled data alone produce a
poor classifier.

2 Baluja [Baluja, 1998] used Naive Bayes [Friedman, 1997] and Tree-
Augmented Naive Bayes (TAN) classifiers [Friedman et al., 1997] to obtain
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excellent classification results, but there were cases where unlabeled data
degraded performance.

3 In work aimed at classification of documents, Nigam et al [Nigam et al.,
2000] used Naive Bayes classifiers and a large number of observables. They
discussed several situations where unlabeled data degraded performance,
and proposed techniques to reduce the observed degradation.

4 Bruce [Bruce, 2001] used labeled and unlabeled data to learn Bayesian net-
work classifiers, from Naive Bayes classifiers to fully connected networks.
The Naive Bayes classifier displayed bad classification performance, and
in fact the performance degraded as more unlabeled data were used. In
some cases, more complex networks also displayed degradation as unla-
beled samples were added.

Both Shahshahani and Landgrebe [Shahshahani and Landgrebe, 1994b] and
Nigam [Nigam, 2001] are rather explicit in stating that unlabeled data can de-
grade performance, but rather vague in explaining how this can be so and how
to analyze the phenomenon. They refer to numerical problems and modeling
errors as potential sources of difficulties.

The rest of the chapter concentrates on the more fundamental problem of
incorrect modeling assumptions. We do not deny that numerical problems
can happen in practice; interesting discussions of numerical problems in semi-
supervised learning can be found elsewhere ([McLachlan and Basford, 1988]
and [Corduneanu and Jaakkola, 2002]). The theory in Section 4.5 allows us to
analyze semi-supervised learning without resorting to numerical methods, and
thus obtain insights that are not clouded by the uncertainties of numerical op-
timization. The examples in Section 4.5.3 show that performance degradation
with unlabeled data would occur even if numerical problems were somehow
removed.

4. Semi-supervised Learning Using Maximum Likelihood
Estimation

In semi-supervised learning, classifiers are built from a combination of NlNN
labeled and NuNN unlabeled samples. We assume that the samples are indepen-
dent and identically distributed.

We consider the following scenario. A sample (c,x) is generated from
p(C,X). The value c is then either known, and the sample is a labeled one; or
the value c is hidden, and the sample is an unlabeled one. The probability that
any sample is labeled, denoted by λ, is fixed, known, and independent of the
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samples1. Thus, the same underlying distribution p(C,X) models both labeled
and unlabeled data; we do not consider the possibility that labeled and unla-
beled samples have different generating mechanisms. It is worth noting that
we assume that the revealed label is correct and it is not corrupted by noise;
the case of noisy labels has been studied in various works (such as [Chhikara
and McKeon, 1984; Chittineni, 1981; Krishnan and Nandy, 1990a; Krishnan
and Nandy, 1990b], Chapter 2 of [Pal and Pal, 2002]).

The likelihood of a labeled sample (c,x) is equal to λp(c,x|θ). An unla-
beled sample x does not contain information about the class variable, and its
likelihood is (1 − λ)p(x|θ). Here p(X|θ) is the marginal for X, a mixture
model:

p(X|θ) =
∑
C

p(C,X|θ) =
∑
C

p(X|C, θ) p(C|θ) (4.4)

We have the following assumption:

Assumption 4.1 The mixtures expressed by Eqn. (4.4) are identifi-
able [Redner and Walker, 1984]; that is, distinct parameter values determine
distinct members of the family, with the understanding that permutations of the
mixtures components are allowed.

The distribution p(C,X|θ) can be decomposed either as p(C|X, θ) p(X|θ)
or as p(X|C, θ) p(C|θ), which lead to two paradigms for choosing the para-
metric model: generative and diagnostic.

A generative model is a parametric model where both p(X|C, θ) and p(C|θ)
depend explicitly on θ2. The log-likelihood function of a generative model for
a dataset with labeled and unlabeled data is:

L(θ) = Ll(θ) + Lu(θ) + log
(
λNlN (1 − λ)NuNN

)
, (4.5)

where

Ll(θ) =
NlN∑
i=1

log

[∏
C

p
(
c′|θ) p(xi|c′, θ

)
)I{C=c′}(ci)

]

Lu(θ) =
NlN +NuNN∑

j=(NlN +1)

log

[∑
C

p
(
c′|θ) p(xj |c′, θ

)]
,

and IAI (Z) is the indicator function (1 if Z ∈ A; 0 otherwise),
∑

C and
∏

C
are computed over all values of C, and for convenience we assume the data is
ordered so that the first NlNN samples are labeled.

1This is different from [Nigam et al., 2000] and [Corduneanu and Jaakkola, 2002], where λ is a parameter
that can be set.
2The term sampling model [Dawid, 1976] and type I [Zhang and Oles, 2000] have been used to refer to
generative models.
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Diagnostic models focus only on p(C|X, θ) and take the marginal p(X)
to be independent of θ. For example, logistic regression estimates p(C|X, θ)
directly from data [Zhang and Oles, 2000]. If we have a diagnostic model, the
log-likelihood function of a labeled-unlabeled dataset is:

L(θ) =
NlN∑
i=1

log p(ci|xi, θ) +
NlN∑
j=1

log p(xj)

+
NlN +NuNN∑

k=(NlN +1)

log p(xk) + log
(
λNlN (1 − λ)NuNN

)
,

where we explicitly indicate the fact that p(X) does not depend on θ. Any
attempt to maximize this log-likelihood function with respect to θ will not be
affected by unlabeled data; only the first term of the likelihood has non-zero
derivative with respect to θ. Maximum likelihood estimation of diagnostic
models, in the narrow sense of diagnostic models defined above, cannot pro-
cess unlabeled data for any given dataset. These arguments regarding diag-
nostic models indicate that, as long as maximum likelihood estimation is the
method of choice for estimation, we must resort to some form of generative
model for our classifiers (Zhang and Oles develop a similar argument using
the Fisher information [Zhang and Oles, 2000]). This work adopts maximum
likelihood estimators and generative models.

Statistical intuition suggests that it is reasonable to expect an average im-
provement in classification performance for any increase in the number of sam-
ples (labeled or unlabeled): the more data, the better. In fact, it would seem
that any increase in the number of samples should contribute to a reduction in
the variance of θ̂, and a smaller variance should be beneficial to classification
— this intuitive reasoning suggests that unlabeled data must be used when-
ever available. In Section 4.5.1, we show how this informal argument can be
formalized and the circumstances in which it is valid.

Before we continue with the analysis, a number of assumptions about
P (C,X) and P (C,X|θ) must be made. We will need to apply the assumptions
for several variables in Section 4.5, so it is convenient to have them stated in
generic form for a variable Y with distribution P (Y ) and for a model given by
P (Y |θ).
Assumption 4.2

1 The distribution P (Y ) is defined on a measurable Euclidean space with
measurable Radon-Nikodym density p(Y ).

2 Distributions in the family P (Y |θ) are defined on the same measurable
space as P (Y ), with a measurable Radon-Nikodym density p(Y |θ) for ev-
ery value of θ, and continuous on θ for every value of Y .
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3 The partial derivatives ∂p(Y |θ) /∂θi are measurable functions of Y for
every value of θ, and continuously twice differentiable functions of θ for
every value of Y .

4 The function |p(Y |θ) | and the functions |∂2 log p(Y |θ) /∂θiθj | and
|∂ log p(Y |θ) /∂θi × ∂ log p(Y |θ) /∂θj | (for every pair of components θi

and θj of θ), are dominated by functions integrable with respect to p(Y ),
for all Y and all θ.

5 The expected value E[log p(Y )] exists.

6 The expected values E[log p(Y |θ)] exist for every θ, and each function at-
tains a maximum at some value of θ in an open neighborhood in Θ. �

We adopt Assumption 4.2 throughout for Y equal to (C,X) or X. Conditions
1 and 2 ensure that the distribution and density are well defined, conditions
3-6 ensure that the derivatives of the densities are well defined, and necessary
expectations exist, allowing us to later compute a bound on the covariance
matrix of the estimates of θ.

5. Asymptotic Properties of Maximum Likelihood
Estimation with Labeled and Unlabeled Data

The following analysis provides a unified explanation of the behavior of
classifiers trained with both labeled and unlabeled data for both cases; when
the model is correct and when it is not. To do so we derive the asymptotic
properties of maximum likelihood estimators for the labeled-unlabeled case.

We resort to results that were originally developed by Berk [Berk, 1966] and
Huber [Huber, 1967], and then extended by White [White, 1982]. The basic
results are summarized in Theorem 4.3. In this theorem and later, a Gaussian
density with mean µ and variance σ2 is denoted by N(µ, σ2). The following
matrices are used (matrices are formed by running through the indices i and j):

AY (θ) = E
[
∂2 log p(Y |θ) /∂θiθj

]
,

BY (θ) = E[(∂ log p(Y |θ) /∂θi)(∂ log p(Y |θ) /∂θj)] .

Theorem 4.3 (Theorems 2.2, 3.1, and 3.2 from [White, 1982])
Consider a parametric model P (Y |θ) that satisfies Assumption 4.2. Consider
a sequence of maximum likelihood estimates θ̂N , obtained by maximization of∑N

i=1 log p(yi|θ), with an increasing number of independent samples N , all
identically distributed according to P (Y ). Then θ̂N → θ∗ as N → ∞ for θ
in an open neighborhood of θ∗, where θ∗ maximizes E[log p(Y |θ)]. If θ∗ is
interior to Θ, θ∗ is a regular point of AY (θ) and BY (θ∗) is non-singular, then√

N
(
θ̂N − θ∗

)
∼ N (0, C(θ∗)), where CYCC (θ) = AY (θ)−1BY (θ)AY (θ)−1.
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Note that Theorem 4.3 does not require the distribution P (Y ) to belong to
the family of distributions P (Y |θ).

Consider the application of Theorem 4.3 to semi-supervised learning. Here
the samples are realizations of{

(C,X) with probability λ;
X with probability (1 − λ). (4.6)

To apply Theorem 4.3, it is convenient to obtain a single expression for both
situations. Denote by C̃ a random variable that assumes the same values of C

plus the “unlabeled” value u. We have p
(
C̃ �=�� u

)
= λ. The actually observed

samples are realizations of (C̃,X), so we can summarize Eqn. (4.6) compactly
as follows:

p̃
(
C̃ = c,X = x

)
= (λp(C = c,X = x))I{C̃ �=�� u}(c) ·

((1 − λ)p(X = x))I{C̃=u}(c)
, (4.7)

where p(X) is a mixture density obtained from p(C,X) (Eqn. (4.4)). Accord-
ingly, the parametric model adopted for (C̃,X) is:

p̃
(
C̃ = c,X = x|θ

)
= (λp(C = c,X = x|θ))I{C̃ �=�� u}(c) ·

((1 − λ)p(X = x|θ))I{C̃=u}(c)
. (4.8)

Using these definitions, we obtain:

Theorem 4.4 ([Cozman and Cohen, 2003]) Consider supervised
learning where samples are randomly labeled with probability λ (Eqn. (4.6)).
Adopt the assumptions in Theorem 4.3, with Y replaced by (C,X) and by X,
are valid, and also adopt Assumption 4.1 for the marginal distributions of X.
Then the value of θ∗, the limiting value of maximum likelihood estimates, is:

arg max
θ

λE[log p(C,X|θ)] + (1 − λ)E[log p(X|θ)] , (4.9)

where the expectations are with respect to p(C,X). Additionally,
√

N(θ̂N −
θ∗) ∼ N(0, CλC (θ)) as N → ∞, where CλC (θ) is given by:

CλC (θ) = Aλ(θ)−1Bλ(θ)Aλ(θ)−1, (4.10)

where

Aλ(θ) =
(
λA(C,X)(θ) + (1 − λ)AX(θ)

)
and

Bλ(θ) =
(
λB(C,X)(θ) + (1 − λ)BX(θ)

)
,
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evaluated at θ∗.

Proof. By Theorem 4.3, θ∗ maximizes E
[
log ˜

(
C̃,X|θ

)]
(expectation with

respect to p̃
(
C̃,X

)
). We have:

E
[
log p

(
C̃,X|θ

)]
= E

[
I{I C̃ �=�� u}(C̃) (log λ + log p(C,X|θ))

+I{I C̃=u}(C̃) (log(1 − λ) + log p(X|θ))
]

= λ log λ + (1 − λ) log(1 − λ) +

E
[
I{I C̃�=CC�� u== }(C̃) log p(C,X|θ)

]
+E++
[
I{I C̃=u}(C̃) log p(X|θ)

]
.

The first two terms of this expression are irrelevant to maximization with re-
spect to θ. The last two terms are equal to

λE
[
log p(C,X|θ) |C̃ �=�� u

]
+ (1 − λ)E

[
log p(X|θ) |C̃ = u

]
.

As we have p̃
(
C̃,X|C̃ �=�� u

)
= p(C,X) and p̃

(
X|C̃ = u

)
= p(X)

(Eqn. (4.6)), the last expression is equal to

λE[log p(C,X|θ)] + (1 − λ)E[log p(X|θ)] ,
where the last two expectations are now with respect to p(C,X). Thus we ob-
tain Expression (4.9). Expression (4.10) follows directly from White’s theorem
and Expression (4.9), replacing Y by C,X and X where appropriate.

Expression (4.9) indicates that semi-supervised learning can be viewed
asymptotically as a “convex” combination of supervised and unsupervised
learning. The objective function for semi-supervised learning is a combina-
tion of the objective function for supervised learning (E[log p(C,X|θ)]) and
the objective function for unsupervised learning (E[log p(X|θ)]).

Denote by θ∗λ the value of θ that maximizes Expression (4.9) for a given λ.
Then θ∗1 is the asymptotic estimate of θ for supervised learning, denoted by θ∗l .
Likewise, θ∗0 is the asymptotic estimate of θ for unsupervised learning, denoted
by θ∗u.

The asymptotic covariance matrix is positive definite as BY (θ) is positive
definite and AY (θ) is symmetric for any Y ,

θA(θ)−1BY (θ)A(θ)−1θT = w(θ)BY (θ)w(θ)T > 0,

where w(θ) = θAY (θ)−1. We see that asymptotically, an increase in N , the
number of labeled and unlabeled samples, will lead to a reduction in the vari-
ance of θ̂.
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Such a guarantee can perhaps be the basis for the optimistic view that un-
labeled data should always be used to improve classification accuracy. In the
following, we show this view is valid when the model is correct, and that it is
not always valid when the model is incorrect.

5.1 Model Is Correct
Suppose first that the family of distributions P (C,X|θ) contains the dis-

tribution P (C,X); that is, P (C,X|θ
) = P (C,X) for some θ
. Under this
condition, the maximum likelihood estimator is consistent, thus, θ∗l = θ∗u = θ

given identifiability. Thus, θ∗λ = θ
 for any 0 ≤ λ ≤ 1.

Additionally, using White’s results [White, 1982], A(θ∗λ) = −B(θ∗λ) =
I(θ∗λ), where I() denotes the Fisher information matrix. Thus, the Fisher infor-
mation matrix can be written as:

I(θ) = λIl(θ) + (1 − λ)Iu(θ), (4.11)

which matches the derivations made by Zhang and Oles [Zhang and Oles,
2000]. The significance of Expression (4.11) is that it allows the use of the
Cramer-Rao lower bound (CRLB) on the covariance of a consistent estimator:

Cov(θ̂N ) ≥ 1
N

(I(θ))−1 (4.12)

where N is the number of data (both labeled and unlabeled) and Cov(θ̂N )) is
the estimator’s covariance matrix with N samples.

Consider the Taylor expansion of the classification error around θ
, as sug-
gested by Shahshahani and Landgrebe [Shahshahani and Landgrebe, 1994a],
linking the decrease in variance associated with unlabeled data to a decrease in
classification error, and assuming existence of necessary derivatives:

e(θ̂)≈eB+
∂e(θ)
∂θ

∣∣∣∣∣∣∣∣∣∣
θ�

(
θ̂
((

− θ

)

 +

1
2

tr

(
∂
((

2e(θ)
∂θ2

∣∣∣∣∣∣∣∣∣∣
θ�

(
θ̂
((

− θ

)(

 θ̂ − θ


)T
)

TT
. (4.13)

Take expected values on both sides. Asymptotically, the expected value of the
second term in the expansion is zero, as maximum likelihood estimators are
asymptotically unbiased when the model is correct. Shahshahani and Land-
grebe thus argue that

E
[
e(θ̂)

]
≈ eB + (1/2)tr

(
(∂2e(θ)/∂θ2)|θ�Cov(θ̂)

)
where Cov(θ̂) is the covariance matrix for θ̂. They show that if Cov(θ′) ≥
Cov(θ′′) for some θ′, θ′′, then the second term in the approximation is larger
for θ′ than for θ′′. And again, because Iu(θ) is always positive definite, Il(θ) ≤
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I(θ). Thus, using the CRLB (Eqn. 4.12), the covariance with labeled and
unlabeled data is smaller than the covariance with just labeled data, leading
to the conclusion that unlabeled data must cause a reduction in classification
error when the model is correct. It should be noted that this argument holds
as the number of records goes to infinity, and is an approximation for finite
values.

A more formal, but less general, argument is presented by Ganesalingam
and McLachlan [Ganesalingam and McLachlan, 1978] as they compare the
relative efficiency of labeled and unlabeled data. Castelli also derives a Taylor
expansion of the classification error, to study estimation of the mixing factors,
p(C = c); the derivation is very precise and states all the required assump-
tions [Castelli, 1994].

5.2 Model Is Incorrect
We now study the more realistic scenario where the distribution P (C,X)

does not belong to the family of distributions P (C,X|θ). In view of Theo-
rem 4.4, it is perhaps not surprising that unlabeled data can have the deleterious
effect discussed in Section 4.3. Suppose that θ∗u �=�� θ∗l and that e(θ∗u) > e(θ∗l ),
as in the examples in the next section.3 If we observe a large number of labeled
samples, the classification error is approximately e(θ∗l ). If we then collect
more samples, most of which unlabeled, we eventually reach a point where the
classification error approaches e(θ∗u). So, the net result is that we started with
classification error close to e(θ∗l ), and by adding a great number of unlabeled
samples, classification performance degraded. The basic fact here is that esti-
mation and classification bias are affected differently by different values of λ.
Hence, a necessary condition for this kind of performance degradation is that
e(θ∗u) �=�� e(θ∗l ); a sufficient condition is that e(θ∗u) > e(θ∗l ).

The focus on asymptotics is adequate as we want to eliminate phenomena
that can vary from dataset to dataset. If e(θ∗l ) is smaller than e(θ∗u), then
a large enough labeled dataset can be dwarfed by a much larger unlabeled
dataset — the classification error using the whole dataset can be larger than the
classification error using the labeled data only.

As a digression, note that the asymptotic estimate θ∗λ is obtained as the solu-
tion of an equation of the form g(λ, θ) = λf1(θ)+(1−λ)f2ff (θ) = 0 (f1 and f2ff
are derivatives of expectations with respect to θ). Given suitable regularity as-
sumptions, E[log p(C,X|θ)] and E[p[[ (X|θ)] are continuous and differentiable

3We have to handle a difficulty with e(θ∗u): given only unlabeled data, there is no information to decide
the labels for decision regions, and then the classification error is 1/2 [Castelli, 1994]. Instead of actually
using e(θ∗u), we could consider e(θ∗ε ) for any value of ε > 0. To simplify the discussion, we avoid the
complexities of e(θ∗ε ) by assuming that, when λ = 0, an “oracle” will be available to indicate the labels of
the decision regions.
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functions of θ. Then the partial derivatives of g(λ, θ) with respect to λ and θ
are continuous, and the derivative of g(λ, θ) with respect to θ is not zero at θ∗λ
except in cases where A(θ∗λ) or B(θ∗λ) have pathological behavior (such be-
havior could happen with unlabeled data [Redner and Walker, 1984]). Barring
those cases, the implicit function theorem then guarantees that θ∗λ is a con-
tinuous function of λ. This shows that the “path” followed by the solution is
a continuous one, as also assumed by Corduneanu and Jaakkola in their dis-
cussion of numerical methods for semi-supervised learning [Corduneanu and
Jaakkola, 2002].

A geometric interpretation of the “path” followed by the solution can be
derived from the fact that Eq. (4.9) can be reformulated to show that finding
the optimal parameters θ∗λ is equivalent to minimizing the KL divergence (dis-
tance) between the true joint distribution p(C,X) and the model of the mixture
density given in Eq. (4.7). With only labeled data (λ = 1), the KL distance
being minimized is4:

D(p(C,X) ||p(C,X|θ)) =
∑
X,C

p(X, C) log
p(C,X)

p(C,X|θ) , (4.14)

while with unlabeled data (λ = 0) the KL distance minimized is given by:

D(p(X) ||p(X|θ)) =
∑
X

p(X) log
∑

C p(C,X)∑
C p(C,X|θ) . (4.15)

We see that with unlabeled data, the KL distance between the marginal of the
true distribution and the marginal of the family of distributions is minimized,
while with labeled data, the distance between the joint distributions is mini-
mized. For λ between 0 and 1, the solution is a distribution between these
two extreme solutions. Because the model is incorrect, minimizing the first
distance does not necessarily minimize the latter. Figure 4.1 illustrates this ge-
ometric interpretation of the path, where the distance shown represents the KL
divergence.

The KL divergence interpretation can also be used to further explain why it
is that estimates with labeled data are typically better classifiers than estimates
with unlabeled data, i.e., e(θ∗l ) < e(θ∗u). First we note that the classification
bias (denoted as b(θ)), for a binary classification problem, is upper bounded by

4Summation can be replaced by integration when X is continuous.
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)θP(C,X|

P(C,X)

)lp(C,X|θ )u))p(C,X|θ

Figure 4.1. Geometric interpretation of the path between labeled and unlabeled maximum
likelihood based treating KL divergence as distance. The true joint distribution is outside the
space of achievable distributions based on the modeling assumptions.

the L1 norm as follows [Devroye et al., 1996]:

b(θ) = e(θ) − eB

= 2
∫

|p(c = 1|x) − 1/2|I[g(x;θ)�=�� g∗(x)]p(x) dx

≤ 2
∫

|p(c = 1|x) − p(c = 1|x, θ) |p(x) dx

= 2EX[|p(c = 1|x) − p(c = 1|x, θ) |].
The L1 norm is further upper bounded by the KL divergence between the

distributions. Using and Equations (4.14) and (4.15) we conclude that:

D(p(C|X) ||p(C|X, θ∗l )) ≤ D(p(C|X) ||p(C|X, θ∗u)). (4.16)

Thus, the bound on the L1 norms is smaller for the labeled classifier, which
might lead to a smaller bound on the classification bias, leading to a smaller
classification error. Although the last part of the argument is not guaranteed,
it could give the first indication on why estimates based on unlabeled data are
the ones that typically yield classifiers with a larger classification error than
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those trained with labeled data. The examples in the following section prove
that such a possibility indeed exists for different examples.

5.3 Examples: Unlabeled Data Degrading Performance
with Discrete and Continuous Variables

The previous discussion alluded to the possibility that e(θ∗u) > e(θ∗l ) when
the model is incorrect. To the skeptical reader who still may think that this
will not occur in practice, or that numerical instabilities are to blame, we an-
alytically show how this occurs with several examples of obvious practical
significance.

Example 4.5 Consider the following (fictitious) classification problem. We
are interested in predicting a baby’s gender (G = Boy or Girl) at the
20’th week of pregnancy based on two attributes: whether the mother
craved chocolate in the first trimester (Ch = Y es or No), and whether
the mother’s weight gain was more or less than 15lbs (W = More or
Less). Suppose that the true underlying joint distribution, p(G,Ch, W ) can
be represented with the following graph: G → Ch → W (i.e., W ⊥
⊥ G|Ch) and the values of the conditional probabilities are specified as:
p(G = Boy) = 0.5, p(Ch = No|G = Boy) = 0.1, p(Ch = No|G = Girl)
= 0.8, p(W = Less|Ch = No) = 0.7, p(W = Less|Ch = Y es) = 0.2. With
these probabilities we compute the a-posteriori probability of G (which de-
pends only on Ch):

p(G|Ch) Girl Boy Prediction
No 0.89 0.11 Girl
Yes 0.18 0.82 Boy

The Bayes error rate for this problem can be easily computed and found
to be 15%. Suppose that we incorrectly assume the following (Naive Bayes)
relationship between the variables: Ch ← G → W , thus we incorrectly
assume that weight gain is independent of chocolate craving given the gender.
Suppose also that we are given the values for p(Ch|G) and we wish to estimate
p(G) and p(W |G) from data. We use Eq.(4.9) to get both the estimates with
infinite labeled data (λ = 1) and the estimates with infinite unlabeled data
(λ = 0). For the labeled case, p̂(G) is exactly 0.5. The estimate of p̂(W |G) is
p(W |G) computed from the true distribution: p̂(W = Less|G = Girl) = 0.6,
p̂(W = Less|G = Boy) = 0.25, leading to the a-posteriori probability of G:

p̂(G|Ch, W ) Girl Boy Prediction
No, Less 0.95 0.05 Girl
No, More 0.81 0.19 Girl
Yes, Less 0.35 0.65 Boy
Yes, More 0.11 0.89 Boy
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We see that although there is a non-zero bias between the estimated distribution
and the true distribution, the prediction remains unchanged. Thus, there is no
increase in classification error compared to the Bayes error rate. The solution
for the unlabeled case involves solving a system of three equations with three
variables (using the marginal, p(Ch, W ) from the true distribution), yield-
ing the following estimates: p̂(G = Boy) = 0.5, p̂(W = Less|G = Girl) =
0.78, p̂(W = Less|G = Boy) = 0.07, with a-posteriori probability:

p̂(G|Ch, W ) Girl Boy Prediction
No, Less 0.99 0.01 Girl
No, More 0.55 0.45 Girl
Yes, Less 0.71 0.29 Girl
Yes, More 0.05 0.95 Boy

Here we see that the prediction is changed from the optimal in the case of
Ch = Y es,W = Less; instead of predicting G = Boy, we predict Girl.
We also see that the bias is further increased, compared to the labeled case.
We can easily find the expected error rate to be at 22%, an increase of 7% in
error.�

For the second example, we will assume that bivariate Gaussian samples
(X, Y ) are observed. The only modeling error is an ignored dependency be-
tween observables. This type of modeling error is quite common in practice
and has been studied in the context of supervised learning [Ahmed and Lachen-
bruch, 1977; McLachlan, 1992]. It is often argued that ignoring some depen-
dencies can be a positive decision, as we may see a reduction in the number of
parameters to be estimated and a reduction on the variance of estimates [Fried-
man, 1997].

Example 4.6 Consider real-valued observations (X, Y ) taken from two
classes c′ and c′′. We know that X and Y are Gaussian variables, and we
know their means and variances given the class C. The mean of (X, Y ) is
(0, 3/2) conditional on {C = c′}, and (3/2, 0) conditional on {C = c′′}.
Variances for X and for Y conditional on C are equal to 1. We do not know,
and have to estimate, the mixing factor η = p(C = c′). The data is sampled
from a distribution with mixing factor equal to 3/5.

We want to obtain a Naive-Bayes classifier that can approximate
p(C|X, Y ); Naive-Bayes classifiers are based on the assumption that X and Y
are independent given C. Suppose that X and Y are independent conditional
on {C = c′} but that X and Y are dependent conditional on {C = c′′}. This
dependency is manifested by a correlation ρ = E[(X − E[X])(Y − E[Y ])] =
4/5. If we knew the value of ρ, we would obtain an optimal classification
boundary on the plane X × Y . This optimal classification boundary is shown
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in Figure 4.2, and is defined by the function

y =
(
40x − 87 +

√
5265 − 2160x + 576x2 + 576 log(100/81)

)
/32.

Under the incorrect assumption that ρ = 0, the classification boundary is
then linear:

y = x + 2 log((1 − η̂)/η̂)/3,

and consequently it is a decreasing function of η̂. With labeled data we can
easily obtain η̂ (a sequence of Bernoulli trials); then η∗l = 3/5 and the classi-
fication boundary is given by y = x − 0.27031.

Note that the (linear) boundary obtained with labeled data is not the best
possible linear boundary. We can in fact find the best possible linear boundary
of the form y = x + γ. For any γ, the classification error e(γ) is

e(γ) =
3
5

∫ ∞

−∞

∫∫ ∫ x+γ

−∞

∫∫
N

([
0

3/2

]
, diag[1, 1]

)
dydx

+
2
5

∫ ∞

−∞

∫∫ ∫ ∞

x

∫∫
+γ

N

([
3/2
0

]
,

[
1 4/5

4/5 1

])
dydx.

By interchanging differentiation with respect to γ with integration, it is pos-
sible to obtain de(γ)/dγ in closed form. The second derivative d2e(γ)/dγ2

is positive when γ ∈ [−3/2, 3/2]; consequently there is a single minimum
that can be found by solving de(γ)/dγ = 0. We find the minimizing γ to be
(−9 + 2

√
45/4 + log(400/81))/4 ≈ −0.45786. The line y = x − 0.45786

is the best linear boundary for this problem. If we consider the set of lines
of the form y = x + γ, we see that the farther we go from the best line, the
larger the classification error. Figure 4.2 shows the linear boundary obtained
with labeled data and the best possible linear boundary. The boundary from
labeled data is “above” the best linear boundary.

Now consider the computation of η∗u, the asymptotic estimate with unlabeled
data:

η∗
u = arg max

η∈[0,1]

∫ ∞

−∞

∫∫ ∫ ∞

−∞

∫∫
log
(
ηN([0, 3/2]T , diag[1, 1])+(1 − η)N([3/2, 0]T , diag[1, 1])

)
·
(

(3/5)N([0, 3/2]T , diag[1, 1]) + (2/5)N

([
3/2
0

]
,

[
1 4/5

4/5 1

]))
dydx.

The second derivative of this double integral is always negative (as can be
seen interchanging differentiation with integration), so the function is concave
and there is a single maximum. We can search for the zero of the derivative
of the double integral with respect to η. We obtain this value numerically,
η∗u ≈ 0.54495. Using this estimate, the linear boundary from unlabeled data
is y = x − 0.12019. This line is “above” the linear boundary from labeled
data, and, given the previous discussion, leads to a larger classification error
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than the boundary from unlabeled data. We have: e(γ) = 0.06975; e(θ∗l ) =
0.07356; e(θ∗u) = 0.08141. The boundary obtained from unlabeled data is
also shown in Figure 4.2. �

This example suggests the following situation. Suppose we collect a large
number NlNN of labeled samples from p(C,X), with η = 3/5 and ρ = 4/5. The
labeled estimates form a sequence of Bernoulli trials with probability 3/5, so
the estimates quickly approach η∗l (the variance of η̂ decreases as 6/(25NlNN )).
If we add a very large amount of unlabeled data to our data, η̂ approaches η∗u
and the classification error increases.

By changing the “true” mixing factor and the correlation ρ, we can cre-
ate different situations. For example, if η = 3/5 and ρ = −4/5, the best
linear boundary is y = x − 0.37199, the boundary from labeled data is
y = x−0.27031, and the boundary from unlabeled data is y = x−0.34532; the
latter boundary is “between” the other two — additional unlabeled data lead to
improvement in classification performance. As another example, if η = 3/5
and ρ = −1/5, the best linear boundary is y = x − 0.29044, the boundary
from labeled data is y = x−0.27031, and the boundary from unlabeled data is
y = x − 0.29371. The best linear boundary is “between” the other two. We in
fact attain the best possible linear boundary by mixing labeled and unlabeled
data with λ = 0.08075.

5.4 Generating Examples: Performance Degradation with
Univariate Distributions

It might be thought that Examples 4.6 and 4.5 display a rare combination of
carefully adjusted parameters. This is certainly not the case, as we have pro-
duced several examples with similar behavior. It is actually interesting to dis-
cuss a heuristic method to produce such examples, and to illustrate the method
with an univariate example.

Consider the following procedure to generate situations where e(θ∗u) >
e(θ∗l ):

1 Take some set of distributions parameterized by θ in Θ, such that all distri-
butions satisfy Assumptions 4.1 and 4.2.

2 Select a value θl ∈ Θ. Then find the value θu ∈ Θ such that θu produces
the worst possible classification error when used to classify samples from
p(C,X|θl). If p(C,X|θl) and p(C,X|θu) produce identical classification
errors, then enlarge the set of distributions and start again.

3 Define pn(C,X) = p(C,X|θl) × p(X|θu). Obtain the value θa that maxi-
mizes the expected value EpEE n [log p(C,X|θ)]. If e(θa) is the same as e(θu),
start again by selecting a different θl or by modifying the set of distributions
parameterized by θ.
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Figure 4.2. Graphs for Example 4.6. On the top, contour plots of the mixture p(X, Y ), the op-
timal classification boundary (quadratic curve) and the best possible classification boundary of
the form y = x+γ. On the bottom, the same contour plots, and the best linear boundary (lower
line), the linear boundary obtained from labeled data (middle line) and the linear boundary ob-
tained from unlabeled data (upper line); thus the classification error of the unlabeled classifier
is larger than that of the labeled classifier.
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Note that pn(C,X) cannot induce a distribution parameterized by Θ, as oth-
erwise identifiability would be violated (p(( (X|θu) would correspond to at least
two different distributions). If a classifier is learned with unlabeled data sam-
pled from pn(C,X), by construction the classification error is the worst pos-
sible (e(θu)); if a classifier is learned from labeled data, then by Theorem 4.3
the result is p(C,X|θa) and by construction e(θa) < e(θu). The next example
was generated using such a procedure5.

Example 4.7 Consider real-valued observations X taken from two classes
c′ and c′′. We adopt a mixture of known Gaussians as our model, and we know
that the mixing factor η belongs to the interval [0.2, 0.8]. The exact value of
η must be estimated. We adopt p(X|C = c′) = N(0, 1) and p(X|C = c′′) =
N(3, 1).

The optimal “plug-in” classification rule depends on the estimate η̂ as fol-
lows:

{c′ if X ≤ b(η̂); c′′ otherwise}, where b(η̂) = (9 − 2 log(1/η̂ − 1))/6.

Suppose the observations are actually sampled from

pn(C = c′, X) = pn(C = c′|X)pn(X)

=
0.8N(0, 1)

0.8N(0, 1) + 0.2N(3, 1)
(0.2N(0, 1) + 0.8N(3, 1)),

pn(C = c′′, X) = pn(C = c′′|X)pn(X)

=
0.2N(3, 1)

0.8N(0, 1) + 0.2N(3, 1)
(0.2N(0, 1) + 0.8N(3, 1)).

While the joint distribution pn(C,X) is not a mixture of Gaussians, the
marginal pn(X) is a mixture of Gaussians with mixing factor 0.2. Like-
wise, the posterior pn(C|X) is identical to the posterior of a mixture of
Gaussians with mixing factor 0.8. Note that the classification error for η̂ is
e(η̂) =

∫∞
b

∫∫
(η̂) pn(C = c′, X)dx +

∫ b(η̂)
−∞
∫∫

pn(C = c′′, X)dx, a decreasing func-
tion from 0.2 to 0.8 (Figure 4.3). If η̂ = 0.8, the Bayes error is attained. The
estimate with fully unlabeled data is η∗u = 0.2, which yields the worst perfor-
mance. For labeled data, we estimate η using a sequence of Bernoulli trials
with probability pn(C = c′) =

∫
pn(C = c′, X)dx ≈ 0.339171, so asymp-

totically we have η∗l ≈ 0.339171. Thus, the classification error produced with
labeled data is smaller than the error produced with unlabeled data.�

5The construction method and the following example were developed by Fabio Cozman.
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Using Theorem 4.4, we can study the behavior of classification error for
varying amounts of unlabeled data. In Example 4.7, we have:

η∗
λ = arg max

η∈[0.2,0.8]
λE
[
log
(
pn(C = c′, X)I{C=c′}(C)pn(C = c′′, X)I{C=c′′}(C)

)]
+(1 − λ)E[log pn(X)]

= arg max
η∈[0.2,0.8]

λ

(∫((
p

∫∫
n(c′, X) log(ηN(0, 1))dx+

∫
+ p

∫∫
n(c′′, X) log((1−η)N(3, 1))dx

)
+(1 − λ)

∫
pn(X) log(ηN(0, 1) + (1 − η)N(3, 1))dx

= arg max
η∈[0.2,0.8]

λ log η ×
∫

0.8N(0, 1)

0.8N(0, 1) + 0.2N(3, 1)
(0.2N(0, 1) + 0.8N(3, 1))dx

+λ log(1 − η) ×
∫

0.2N(3, 1)

0.8N(0, 1) + 0.2N(3, 1)
(0.2N(0, 1) + 0.8N(3, 1))dx

+(1 − λ)

∫
(0.2N(0, 1) + 0.8N(3, 1)) log(ηN(0, 1) + (1 − η)N(3, 1))dx

= arg max
η∈[0.2,0.8]

λ(η∗
l log η + (1 − η∗

l ) log(1 − η))

+(1 − λ)

∫
(0.2N(0, 1) + 0.8N(3, 1)) log(ηN(0, 1) + (1 − η)N(3, 1))dx.

The derivative (with respect to η) of the quantity to be maximized is

d(η) = λ

(
η∗

l

η
− 1 − η∗

l

1 − η

)
+(1−λ)

∫
(0.2N(0, 1)+0.8N(3, 1))

N(0, 1)−N(3, 1)

ηN(0, 1)+(1−η)N(3, 1)
dx. (4.17)

Figure 4.3 shows three graphs of Expression (4.16) for different values of λ.
For λ = 1, we have the function for labeled data only, with zero at η∗l . For
λ = 0, we have the function for unlabeled data only (obtained by numerical
integration), with zero at η∗u. Any value of λ between 0 and 1 will correspond to
a curve that is the “weighted” average of the other curves, with a zero between
η∗u and η∗l , and then e(η∗l ) < e(η∗λ) < e(η∗u). The figure shows the curve for
λ = 1/2.

In many aspects, this example has the same structure as Example 4.6. In
both examples, the estimates from labeled data are simple Bernoulli trials,
while the estimates from unlabeled data have more complex behavior. In both
examples the estimates move from θ∗l to θ∗u as λ goes from 1 to 0.

5.5 Distribution of Asymptotic Classification Error Bias
The examples above illustrated how unlabeled data can degrade the perfor-

mance of classifiers asymptotically using specific examples. To illustrate the
differences in error bias over a wider range of classification problems, we per-
formed another experiment, simulating the case of infinite labeled data and
infinite unlabeled data with a large number of different classifiers and incor-
rect modeling assumptions.We generated 100 different classifiers, each with
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Figure 4.3. Graphs for Example 4.7. On the top, classification error e(η̂). On the bottom,
derivatives of the function to be maximized when computing η∗

λ, for three values of λ: top
curve is for λ = 1, bottom curve is for λ = 0, and curve in the middle for λ = 1/2.

two classes and four Gaussian features that are not independent of each other.
The parameters of each classifier are the class prior, η = p(C = 0), mean
vectors, µ0, µ1 ∈ �4 and a common covariance matrix S ∈ �4x4. The Bayes
error rate of the classifiers ranged from 0.7 − 35%, with most being around
10%.

For each classifier we look at 11 combinations of making incorrect indepen-
dence assumptions, by assuming that features are independent of each other
(from one to all features being independent of each other; overall 11 combina-
tions). For example, if we assume that x1 and x3 are independent of the rest of
the features, the covariance matrix under this assumption must have the form:

Ŝ =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
s11 0 0 0
0 s22 0 s24

0 0 s33 0
0 s42 0 s44

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ .
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For each combination we computed the classification error of two classifiers
(trained under the independence assumptions); one trained with infinite labeled
data and a second trained with infinite unlabeled data. With labeled data, we
use the exact values that are not zero from the original covariance matrix. With
unlabeled data, we approximate infinity with 100, 000 training records (which
is very large compared to 25, the largest number of parameters estimated in the
experiments). We use EM to learn with unlabeled data, with the starting point
being the parameter set of the labeled only classifier, therefore assuring that
the difference in the results of the two classifiers do not depend on the starting
point of EM.

Figure 4.4 shows the histograms of the classification bias of the classifiers
with incorrect assumptions for learning with labeled and unlabeled data. The
histograms show that the classification bias of the labeled based classifiers
tends to be more highly concentrated closer to 0 compared to the unlabeled
based classifiers. In these experiments, we also observe that using unlabeled
data always resulted in a higher error rate compared to using labeled data, as
can be seen in Figure 4.5. The only exception is when we do not make any
incorrect independence assumptions, in which the classifiers trained with un-
labeled data achieved the Bayes error rate. What we understand from these
histograms is that when training with labeled data, many classifiers will per-
form well (although might not achieve the optimal Bayes rate). However, clas-
sifiers trained with unlabeled data need to be more accurate in their modeling
assumptions in order to achieve good performance and they are a great deal
more sensitive to such inaccuracies.

5.6 Short Summary
To summarize the results so far, we can say the following:

Labeled and unlabeled data contribute to a reduction in variance in semi-
supervised learning under maximum likelihood estimation.

When the model is correct, the maximum likelihood estimator is consistent
and both labeled and unlabeled data contribute to a reduction in classifica-
tion error by reducing variance. Also, unlabeled data suffice to define the
decision regions and labeled data can be used solely to label the regions
(Algorithm M).

When the model is incorrect, there may be different asymptotic estimation
bias for different values of λ. Asymptotic classification error may also be
different for different values of λ. An increase in the number of unlabeled
samples may lead to a larger estimation bias and a larger classification error.
The examples illustrated this possibility.
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Figure 4.4. Histogram of classification of error bias from the Bayes error rate under incorrect
independence assumptions for (a) training with labeled data and (b) training with unlabeled
data.
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Figure 4.5. Histogram of difference between classification error rates of classifiers trained
under incorrect independence with labeled data and with unlabeled data (e(θ∗

u) − e(θ∗
l )).

Arguments using bounds on the classification bias, and the experiments
with multiple classifiers suggests that the asymptotic classification error
with unlabeled data is typically higher than with labeled data.

In essence, semi-supervised learning displays an odd failure of robustness:
for certain modeling errors, more unlabeled data can degrade classification per-
formance. Estimation bias is the central factor in this phenomenon, as the level
of bias depends on the ratio of labeled to unlabeled samples. Most existing
theoretical results on semi-supervised learning are based on the assumption of
no modeling error, and consequently bias has not been an issue so far.

6. Learning with Finite Data
So far, we discussed the asymptotic properties of ML estimation. As in

reality we never have infinite training data, a natural question is what occurs
with finite training data? To illustrate the different situations that can occur
we performed extensive experiments, using artificial and real data, learning
correct and incorrect models with various sizes of training data (both labeled
and unlabeled).

Before we describe the experiments, we note the method used to find the
maximum likelihood solution with labeled and unlabeled data. When unla-
beled data are present in a finite data set D, it is in general not possible to
find an analytical solution that maximizes the likelihood function (Eq.(4.5)).
We therefore must resort to numerical approaches. One of the most popular
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Box 5.1 (EM Algorithm)

Given that Y is the set of missing variables and Z are the observed
variables follow the following steps:

Initialization Initialize to θ0. Repeat the following two steps until
convergence:

Step 1: Expectation Compute the distribution pt(y) = p
(
y|z, θt−1, D

)
over all values of Y .

Step 2: Maximization Set θt to the θ that maximizes the following
expectation: EpEE t(Y )[log(p(y, z|θ))].

In semi-supervised learning, given that the class variable, C, has missing
values and the features X have no missing values, EM follows the
following steps:

Initialization: Initialize to θ0. Repeat the following two steps until
convergence:

Step 1: Expectation Compute the distribution p
(
C = c|X = x|θt−1

)
for

every value of C and every record in D.

Step 2: Maximization Set θt to the θ that maximizes

EpEE (pp C|x,θt−1)[log(p(c,x|θ))].

approaches is the expectation-maximization (EM) algorithm [Dempster et al.,
1977]. EM is an iterative algorithm and is described in Box 5.1.

6.1 Experiments with Artificial Data
In our experiments, we focus on modeling assumptions related to the depen-

dencies and independencies among the different features. Borrowing the term
from Bayesian networks theory, we call these structure assumptions. Other
types of modeling assumptions, such as the parametric form of the distribution
of the features, the number of classes or the number of values of a discrete
feature, are not changed and assumed to be known.

We generated datasets using two different model structures, Naive-Bayes
(NB) and Tree-Augmented-Naive Bayes (TAN) [Friedman et al., 1997], vary-
ing the number of features, the number of values per feature (all features are
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discrete) and the size of the datasets, with different proportions of labeled and
unlabeled records in each set. In the TAN structure, the class node has no
parents and each feature has the class node as a parent and at most one other
feature, such that the result is a tree structure for the features. This type of rep-
resentation provides pairwise dependencies between the linked features. The
decomposition of the joint probability distribution as represented by the TAN
classifier is given as:

p(C, X1, X2, .., XpXX ) = p(C)
p∏

i=1

p(XiXX |C, Pai), (4.18)

where Pai is either an empty set or is equal to XjX , i �=�� j.
The full description of the experiments, with their results are given in [Coz-

man and Cohen, 2001], here we introduce the main results.
Figure 4.6(a-c) shows an example of the probability of error graphs for the

three types of tests we performed, where each point in the graph is an average
of 10 trials. The graphs correspond to models with 10 features. Figure 4.6(a)
corresponds to learning a NB structure when the correct structure is NB. Fig-
ure 4.6(b) is the result of estimating a TAN structure when the correct structure
is TAN and Figure 4.6(c) is the result of estimating a NB structure when the
correct structure is the TAN given in (b).

We see from Figures 4.6(a) and 4.6(b) that unlabeled data help significantly
in reducing the classification error. We also see that the error is reduced fur-
ther as more unlabeled data are added. When more labeled data are added,
the improvement gained by using the unlabeled data is smaller. That can be
explained by the fact that the classifier learned using only the labeled data is
already close to the optimal Bayes error rate.

The graphs in Figure 4.6(c) show that unlabeled data degrade the perfor-
mance when an incorrect structure is assumed. First we see that adding more
labeled data improves the classification even with an incorrect structure as-
sumption. Second we see that as we add more unlabeled data, the classification
error becomes higher, even with a small number of labeled data.

6.2 Can Unlabeled Data Help with Incorrect Models? Bias
vs. Variance Effects and the Labeled-unlabeled Graphs

Our asymptotic analysis and the experiments presented above suffice to
show the importance of modeling assumption when learning with unlabeled
data, but how do we then account for the success of other researchers in ap-
plications such as text classification [Nigam et al., 2000], image understand-
ing [Baluja, 1998], and others? There are two possibilities. First, it might be
that their assumed model was truly the correct model. Alternatively, a more
plausible explanation is that of the tradeoff between bias and variance.
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Figure 4.6. Classification error example for networks with 10 features. (a) Assumed and cor-
rect structure is NB, (b) Assumed and correct structure is TAN, (c) Assumed structure is NB,
correct structure is TAN. The bars represent 30% and 70% percentiles of the error (statistics
computed over 10 trials per point).
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If we take the application of classifying face orientation [Baluja, 1998], the
problem involves many observables (image pixels) with a small corpus of la-
beled data. From our theoretical analysis we know that regardless of modeling
assumptions, the addition of unlabeled data decreases the variance of the es-
timator, while when the model is incorrect, the estimation bias can increase.
Classification error with finite training data is a function of both the bias and
the variance [Friedman, 1997; James, 2003]. Therefore, when the amount of
labeled data is small, the increase in bias caused by the unlabeled data is mit-
igated by the decrease in variance, hence causing an improvement in classi-
fication performance. This agrees with the conclusions of Shahshahani and
Landgrebe [Shahshahani and Landgrebe, 1994a] who indicated that unlabeled
data become more useful as the number of observables increases.

To illustrate this point we performed another test, using data generated from
a TAN structure with 49 features. The data sets were generated just as in
the previous tests. Figure 4.7(a-b) shows the averaged classification error for
both types of experiments, with (a) showing the results assuming the correct
structure and (b) the results assuming a NB model. Again, we see that when
we assume the correct structure, adding the unlabeled examples improves the
classification result at a fast rate, reaching almost the Bayes rate with just 30
labeled records and 30000 unlabeled records. In Figure 4.7(b) we see that
although the structure assumption is incorrect, adding unlabeled data improves
the classification results significantly for the cases where 30 and 300 labeled
records were used. However, as can be seen in Figure 4.7(c), with 3000 labeled
records, adding unlabeled data degraded the performance. We can conclude
that when the estimator using only the labeled data has low variance, adding
the unlabeled data can degrade the performance. This means that unlabeled
data improve or degrade the classifier’s performance depending on both the
classifier’s complexity and the number of labeled training records.

Further strengthening the experiment above, we performed a similar ex-
periment with the Adult database taken from the UCI repository. The Adult
database consists of 30162 labeled records for training and 15060 labeled
records for testing. The classification problem in the Adult database is to cor-
rectly estimate the income of a person (above or below $50K per year) using 15
features, such as age, sex, profession, etc. The dataset is the result of the U.S.
Census bureau questioners. The study by Kohavi [Kohavi, 1996] using the
MLC++ machine learning library showed that the classification error using all
of the labeled data set is between 14-17% for the best classifiers. Naive-Bayes
was used as one of the classifiers, and it achieved around 16% classification
error.

In our experiment, we randomly partition the training data set to create la-
beled and unlabeled (LUL) data sets; ranging from 30–3000 for the labeled
sets and 0–30000 for the unlabeled sets. When possible, we create 5 sample
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Figure 4.7. Classification error example for networks with 49 features. (a) Assumed and cor-
rect structure are TAN, (b) Assumed structure is NB, correct structure is TAN, (c) Zoom in on
the bottom portion of (b).The bars represent 30% and 70% percentiles of the error (statistics
computed over 10 trials per point).
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Figure 4.8. Classification result for the Adult DB experiment. The bars represent 30% and
70% percentiles of the error (statistics computed over the five trials per point).

sets. We use the EM algorithm to learn a NB classifier for each LUL training
set.

The classification results are shown in Figure 4.8. The graphs clearly show
that using unlabeled data increases the classification error compared to using
only labeled data, except for the cases with only 30 labeled records.

Similarly to the artificially generated data case of Figure 4.7, when only
30 labeled records are available adding the unlabeled data does improve the
classification result, from about 50% error to 30% error. However, as the size
of the labeled set increases, adding unlabeled data degrades the classification
performance from 19% and 17% to about 30%. This result also indicates that
the underlying structure is not NB.

To visualize the effect of labeled and unlabeled samples, going from a
small dataset to a large dataset, we suggest fixing the percentage of unlabeled
samples (λ) among all training samples, and then plotting classification er-
ror against the number of training samples. We call such a graph a labeled-
unlabeled (LU) graph.

Example 4.8 Consider a situation where we have a binary class variable C
with values c′ and c′′, and p(C = c′) = 0.4017. We also have two real-valued
observables X and Y with distributions:

p
(
X|c′) = N(2, 1), p

(
X|c′′) = N(3, 1),

p
(
Y |c′, x) = N(2, 1), p

(
Y |c′′, x) = N(1 + 2x, 1).

There is dependency between Y and X conditional on {C = c′′}. Suppose we
build a Naive Bayes classifier for this problem. Figure 4.9(a) shows LU-graphs
for 0% unlabeled samples, 50% unlabeled samples and 99% unlabeled sam-
ples, averaging over a large ensemble of classifiers. As expected, the asymp-
totes converge to different values. Suppose then that we started with 50 labeled
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samples as our training data. Our classification error would be about 7.8%,
as we can see in the LU-graph for 0% unlabeled data. Suppose we added 50
labeled samples; we would obtain a classification error of about 7.2%. Now
suppose we added 100 unlabeled samples. We would move from the 0% LU-
graph to the 50% LU-graph. Classification error would increase to 8.2%! And
if we then added 9800 unlabeled samples, we would move to the 99% LU-
graph, with classification error about 16.5% — more than twice the error we
had with just 50 labeled samples. �

Similar to Example 4.8, Figure 4.9(b) shows the LU graphs for a case where
the features are discrete, involving 10 features sampled from a TAN model and
learned with a NB model. As expected, the LU-graphs display similar behavior
as with the mixture of Gaussian case.

In difficult classification problems, where LU-graphs decrease very slowly,
unlabeled data may improve classification performance. As we saw in the Fig-
ures 4.8 and 4.7, problems with a large number of observables and parameters
should require more training data, so we can expect that such problems benefit
more consistently from unlabeled data. Another possible phenomenon is that
the addition of a substantial number of unlabeled samples may reduce variance
and decrease classification error, but an additional, much larger, pool of unla-
beled data can eventually add enough bias so as to increase classification error.
Such a situation is likely to have happened in some of the results reported by
Nigam et al. [Nigam et al., 2000], where classification errors go up and down
as more unlabeled samples are added.

6.3 Detecting When Unlabeled Data Do Not Change the
Estimates

From all the results discussed so far, we should expect the unlabeled data
to affect the estimates of the classifier’s parameters (improving or degrading
classification). But, can we predict those situations where unlabeled data do
not affect the initial estimate? Note that this question focuses on a specific
data set, not on expected behavior. The remainder of this section discusses this
issue.

Given that all of the observables are discrete, the empirical distribution for
X in the unlabeled data is:

fuff (X = x) =
# of times {X = x} in unlabeled records

NuNN
.

Given a particular dataset D and a given joint probability distribution
p(C,X|θ), we prove the following theorem.
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Figure 4.9. LU-graphs (a) example with two Gaussian features, (b) Discrete features. Each
point in each graph is the average of multiple trials.
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Theorem 4.9 Assume that all the features in the vector X are discrete and
there exists a θ such that p(X|θ) = fuff (X). Let θ∗l = arg maxθ Ll(θ) and
θ∗ = arg maxθ L(θ). If for all values of X , p(X; θ∗l ) = fuff (X), then θ∗ = θ∗l .

Proof. We know that if for some θ′, p(X|θ′) = fuff (X), then θ′ =
arg maxθ Lu(θ).

So for θ∗l = fuff (x) we obtain θ∗l = arg maxθ Lu(θ).
Now we can bound max L(θ) from above using:

max L(θ) = max Ll(θ)Lu(θ)
≤ (max Ll(θ)) (max Lu(θ))
= Ll(θ∗l )Lu(θ∗l ),

and then clearly the way to maximize L(θ) is to take θ = θ∗l .
The theorem states that if the empirical marginal of the unlabeled data is

equal to p(X|θ∗l ), then the unlabeled data do not change the estimate of the
model. Note that it is easy to compute θ∗l for a given dataset by simple event
counting, since the data is fully labeled and we assume no missing data for the
features.

When labeled data are available in abundance, then θ∗l should be enough to
provide a good approximation to the empirical marginal, and then the value of
unlabeled data is small. It is also important to note that the theorem relates to
a specific dataset. It is expected that for small size datasets, the condition that
p(X|θ∗l ) = fuff (X) is unlikely to be be met, perhaps strengthening the notion
that unlabeled data typically do change the estimates of the distribution.

6.4 Using Unlabeled Data to Detect Incorrect Modeling
Assumptions

The analysis of the previous sections presents a new, potentially powerful,
use for unlabeled data: detecting incorrect modeling assumptions. Consider
the following setup. We have a dataset with sufficient labeled data to estimate
classification error (using data partition or cross validation), and a much larger
dataset with unlabeled data. We want to obtain estimates θ̂ for a parametric
model p(C,X|θ) that supposedly contains p(C,X). We can test the validity
of the model by examining whether estimates with labeled data and estimates
with labeled and unlabeled data produce distinct classification errors. Con-
sider the null hypothesis that the parametric model p(C,X|θ) in fact contains
the “true” distribution p(C,X). We can use results by O’Neill [O’Neill, 1978]
to obtain the asymptotic distribution of classification error under this null hy-
pothesis. Alternatively, a bootstrap scheme can produce the distribution of
classification error with labeled samples and with labeled and unlabeled sam-
ples [Efron and Tibshirani, 1993]. We then test whether the classification error
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obtained with unlabeled data is identical to the classification error obtained
with labeled data, thus validating the null hypothesis.

In Chapter 7, we will use such a test to decide on when to switch between
a small set of models (Naive Bayes and TAN). However, this test can be used
without having to switch between models, and whenever data are abundant, the
test is a strong indicator of model validity.

7. Concluding Remarks
In this chapter, we have demonstrated the different properties of learning

classifiers with unlabeled data. We showed that the optimistic view on the
value of unlabeled data, while valid with correct modeling assumptions, is
often wrong with incorrect models. The asymptotic analysis of the maximum
likelihood estimators, followed by the different examples, prove that unlabeled
data can have a deleterious effect on the classifier’s performance. Experiments
with finite data sets displayed the same phenomenon whenever the increase
of bias is more significant than the decrease in variance, both attributed to the
addition of unlabeled data.

An obvious conclusion of the analysis is that finding models that are closer
to the true data generating distribution is very important in semi-supervised
learning, perhaps much more than in the purely supervised case. In Chapter 7,
we discuss this conclusion in the context of Bayesian network classifiers.

Following our investigation of semi-supervised learning, there are several
important open theoretical questions and research directions:

Is it possible to find necessary and sufficient conditions for performance
degradation to occur? Finding such conditions are of great practical sig-
nificance. Knowing these conditions can lead to the design of new useful
tests that will indicate when unlabeled can be used or when they should be
discarded, or a different model should be chosen?

An important question is whether other semi-supervised learning methods,
such as transductive SVM [Bennett and Demiriz, 1998], co-training [Blum
and Mitchell, 1998] will exhibit the phenomenon of performance degrada-
tion? While no extensive studies have been performed, a few results from
the literature suggest that it is a realistic conjecture. Zhang and Oles [Zhang
and Oles, 2000] demonstrated that transductive SVM can cause degra-
dation of performance when unlabeled data are added. Ghani [Ghani,
2002] described experiments where the same phenomenon occurred with
co-training. If the causes of performance degradation are the similar for
different algorithms, it should be possible to present a unified theory for
semi-supervised learning.
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Are there performance guarantees for semi-supervised learning with finite
amounts of data, labeled and unlabeled? In supervised learning such guar-
antees are studied extensively. PAC and risk minimization bounds help in
determining the minimum amount of (labeled) data necessary to learn a
classifier with good generalization performance. However, there are no ex-
isting bounds on the classification performance when training with labeled
and unlabeled data. Finding such bounds can be derived using principals
in estimation theory, based on asymptotic covariance properties of the es-
timator. Other bounds can be derived using PAC theoretical approaches.
Existence of such bounds can immediately lead to new algorithms and ap-
proaches, better utilizing unlabeled data.

Can we use the fact that unlabeled data indicates model incorrectness to
actively learn better models? The use of active learning seems promising
whenever possible, and it might be possible to extend active learning to
learn better models, not just enhancement of the parameter estimation.



Chapter 5

ALGORITHM:
MAXIMUM LIKELIHOOD MINIMUM ENTROPY
HMM

In Chapter 2, we analyzed the probabilistic classifiers and observed that
when probability distributions are used for classification task, the classification
performance is very closely related to the cross entropy between the hidden
and the observed states. In this chapter, we use this to develop a new learning
algorithm for the HMM.

We formalize the idea of using information theory in the framework of Hid-
den Markov Models (HMMs). In the case of HMMs, we enforce the hidden
state variables to capture relevant information about the observations. At the
same time, we would like our models to explain the generative process of the
data as accurately as possible. Therefore, we propose a cost function that com-
bines both the information theoretic (MI) and the maximum likelihood (ML)
criteria.

In later chapters (Chapters 8 and 9), we will see that HMMs are quite suc-
cessful in modeling the temporal data and good performance is achieved when
HMMs are used as classifiers.

1. Previous Work
Numerous variations of the standard formulation of Hidden Markov Models

have been proposed in the past, such as Parameterized-HMM (PHMM) [Wil-
son and Bobick, 1998], Entropic-HMM [Brand and Kettnaker, 2000], Variable-
length HMM (VHMM) [Galata et al., 2001], Coupled-HMM (CHMM) [Brand
et al., 1997], Input-Output HMM (IOHMM) [Bengio and Frasconi, 1996],
Factorial-HMM [Ghahramani and Jordan, 1996], and Hidden-Markov Deci-
sion Trees (HMDT) [Jordan et al., 1997], to name a few. Each of these models
attempts to solve some of the deficiencies of standard HMMs given the par-
ticular problem or set of problems at hand. Given that most of them aim at
modeling the data and learning the parameters using ML, in many cases their
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main differences lie in the conditional independence assumptions made while
modeling the data, i.e. in their graphical structure. Conversely, the graphical
structure of the model presented in this chapter remains the same as that of
a standard HMM, but the optimization function is different. Even though we
develop here the learning equations for HMMs, the framework that we present
could easily be extended to any graphical model.

Recently, Tishby et al. [Tishby et al., 1999] proposed Information Bottle-
neck as a method for doing clustering. The Information Bottleneck method
is an unsupervised non-parametric data organization technique. Given a joint
distribution P (A,B), the method constructs, using information theoretic prin-
ciples, a new variable T that extracts partitions, or clusters, over the values of
A that are informative about B. In particular, consider two random variables X
and Q with their assumed joint distribution P (X, Q), where X is the variable
that we are trying to compress with respect to the ‘relevant’ variable Q. Tishby
et al. [Tishby et al., 1999] propose the introduction a soft partitioning of X
through an auxiliary variable T , and the probabilistic mapping P (T |X), such
that the mutual information I(T ; X) is minimized (maximum compression)
while the probabilistic mapping P (T |X), the relevant information I(T ; Q) is
maximized.

This model is also related to the recently popular debate of conditional ver-
sus joint density estimation. The ‘conditional’ approach (i.e. the maximization
of the conditional likelihood of the variables of interest instead of the full like-
lihood) is closely related to the use of discriminative approaches in learning
theory. Jebara and Pentland [Jebara and Pentland, 1998] nicely summarize the
advantages and disadvantages associated with joint and conditional density es-
timation. Standard HMMs perform joint density estimation of the hidden state
and observation random variables. However, in situations where the resources
are limited (complexity, data, structures), the system has to handle very high
dimensional spaces or when the goal is to classify or cluster with the learned
models, a conditional approach is probably superior to the full joint density
approach. One can think of these two methods (conditional vs joint) as two
extremes with our work providing a tradeoff between the two. Sections 5.2
and 5.4 analyze the properties of our approach and relate it to the purely prob-
abilistic model more formally.

Finally we would like to point out how our work is different to the Maxi-
mum Mutual Information Estimation (MMIE) approach that is so popular in
the speech recognition community. In particular, Bahl et al. [Bahl et al., 1993]
introduced the concept of Maximum Mutual Information Estimation (MMIE)
for estimating the parameters of an HMM in the context of speech recogni-
tion, where typically a different HMM is learned for each possible class (e.g.
one HMM for each word in the vocabulary). New waveforms are classified
by computing their likelihood based on each of the models. The model with
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the highest likelihood is selected as the winner. However, in our approach, we
learn a single HMM whose hidden states correspond to different classes. The
algorithm in [Bahl et al., 1993] attempts to maximize the mutual information
between the choice of the HMM and the observation sequence to improve the
discrimination across different models. In contrast, our algorithm aims at max-
imizing the mutual information between the observations and the hidden states,
so as to minimize the classification error when the hidden states are used as the
classification output.

2. Mutual Information, Bayes Optimal Error, Entropy,
and Conditional Probability

In the ‘generative approach’ to machine learning, the goal is to learn a prob-
ability distribution that defines the process that generated the data. Such an
approach is particularly good in modeling the general form of the data and can
give some useful insights into the nature of the original problem. Recently,
there has been an increasing focus on connecting the performance of these
generative models to their classification accuracy when they are used for clas-
sification tasks. Recall that in Chapter 2 we develop an extensive analysis of
the relationship between the Bayes optimal error of a classification task using a
probability distribution and the entropy between the random variables of inter-
est. Consider the family of probability distributions over two random variables
(X, Q) denoted by P (X, Q). The classification task is to predict Q after ob-
serving X . As given in Theorem 2.4, the relationship between the conditional
entropy H(X|Q) and the Bayes optimal error, ε is given by

1
2
HbHH (2ε) ≤ H(X|Q) ≤ HbHH (ε) + log

N

2
(5.1)

with HbHH (p) = −(1 − p) log(1 − p) − p log p.
Figure 5.1 illustrates this relationship between the conditional entropy and

the Bayes optimal error. In Figure 5.1 the only realizable –and at the same time
observable– distributions are those within the black region. One can conclude
from Figure 5.1 that, if the data is generated according to a distribution that
has high conditional entropy, the Bayes optimal error of any classifier for this
data will be high. Even though this relationship is between the true model
and the Bayes optimal error, it also applies to a model that has been estimated
from data, – assuming a consistent estimator has been used, such as Maximum
Likelihood, and the model structure is the true one. As a result, when the
learned distribution has high conditional entropy, it might not necessarily do
well on classification. Therefore, if the final goal is classification, the graph
in Figure 5.1 suggests that low entropy models should be preferred over high
entropy ones. The cost function proposed in Eqn 5.2 favors low conditional
entropy models to high entropy ones.
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Figure 5.1. Bayes optimal error versus conditional entropy

A Hidden Markov Model (HMM) is a probability distribution over a set
of random variables, some of which are referred to as the hidden states (as
they are normally not observed and they are discrete) and others are referred
to as the observations (continuous or discrete). Traditionally, the parameters
of Hidden Markov Models are estimated by maximizing the joint likelihood of
the hidden states Q and the observations X , P (X, Q). Conventional Maximum
Likelihood (ML) techniques would be optimal in the case of very large datasets
(so that the estimate of the parameters is correct) if the true distribution of the
data was in fact an HMM. However none of the previous conditions is normally
true in practice. The HMM assumption might be in many occasions highly
unrealistic and the available data for training is normally very limited, leading
to important problems associated with the ML criterion (such as overfitting).
Moreover, ML estimated models are often used for clustering or classification.
In these cases, the evaluation function is different to the optimization function,
which suggests the need of an optimization function that correctly models the
problem at hand. The cost function defined in Eqn 5.2 is designed to tackle
some of these problems associated to ML estimation.

When formulating our optimization functional, we exploit the relationship
between the conditional entropy of the data and the Bayes optimal error previ-
ously described. In the case of Hidden Markov Models (HMMs), the X vari-
able corresponds to the observations and the Q variable to the hidden states.
We would like to maximize the joint probability distribution P (Q, X) while
forcing the Q variable to contain maximum information about the X vari-
able (i.e. to maximize their mutual information or minimize the conditional
entropy). In consequence, we propose to maximize both the joint likelihood
and the mutual information between the hidden variables and the observations.
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This leads to the following cost function

F = (1 − α)I(Q, X) + α log P (Xobs, Qobs). (5.2)

where α ∈ [0, 1], provides a way of deciding the appropriate weighting be-
tween the Maximum Likelihood (ML) (when α = 1) and Maximum Mutual
Information (MMI) (when α = 0) criteria, and I(Q, X) refers to the mutual
information between the states and the observations. However, very often one
does not observe the state sequence1. In such a scenario, the cost function
reduces to

F = (1 − α)I(Q, X) + α log P (Xobs). (5.3)

3. Maximum Mutual Information HMMs
We develop in this section the learning algorithms for discrete and con-

tinuous, supervised and unsupervised Maximum Mutual Information HMMs
(MMIHMMs). For the sake of clarity and simplicity, we will start with the
supervised case, where the ’hidden’ states are actually observed in the training
data.

Consider a Hidden Markov Model with Q as the states and X as the obser-
vations. Let F denote the cost function to maximize,

F = (1 − α)I(Q, X) + α log P (Xobs, Qobs) (5.4)

The mutual information term I(Q, X) can be expressed as I(Q,X) =
H(X)−H(X/Q), where H(·) refers to the entropy. Since H(X) is indepen-
dent of the choice of the model and is characteristic of the generative process,
we can reduce our cost function to

F = −(1 − α)H(X/Q) + α log P (Xobs, Qobs)
= (1 − α)F1FF + αF2FF .

In the following we will use the standard HMM notation for the transition
aij and observation bij probabilities,

aij = P (qt = i, qt+1 = j), bij = P (xt = j|qt = i). (5.5)

Expanding each of the terms F1FF and F2FF separately we obtain,

F1FF = −H(X|Q) =
∑
X

∑
Q

P (X, Q) log

T∏
t=1

P (xt|qt)

=

T∑
t=1

M∑
j=1

N∑
i=1

P (xt = j|qt = i)P (qt = i) log P (xt = j|qt = i)

=

T∑
t=1

M∑
j=1

N∑
i=1

P (qt = i)bij log bij .

1We will refer to this case as the unsupervised case while referring to the former as the supervised case.
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and,

F2FF = log πqo
1

+
T∑

t=2

log aqo
t−1,qo

t
+

T∑
t=1

log bqo
t ,xo

t
.

Combining F1FF and F2FF and adding the appropriate Lagrange multipliers to
ensure that the aij and bij coefficients sum to 1, we obtain:

FLF = (1 − α)
T∑

t=1

M∑
j=1

N∑
i=1

P (qt = i)bij log bij

+α log πqo
1

+ α
T∑

t=2

log aqo
t−1,qo

t
+ α

T∑
t=1

log bqo
t ,xo

t

+βiββ

⎛⎝⎛⎛∑
j

aij − 1

⎞⎠⎞⎞+ γiγγ

⎛⎝⎛⎛∑
j

bij − 1

⎞⎠⎞⎞ . (5.6)

Note that in the case of continuous observation HMMs, we can no longer
use the concept of entropy as previously defined. As a result, we will be us-
ing the counterpart differential entropy. Because of this important distinction,
we will carry out the analysis for discrete and continuous observation HMMs
separately.

3.1 Discrete Maximum Mutual Information HMMs
To obtain the parameters that maximize the cost function, we take the deriva-

tive of FLF from Eqn 5.5 and will equate it to zero. First solving for bij , we
obtain:

∂FLF

∂bij
= (1 − α)(1 + log bij)

(
T∑

t=1

P (qt = i)

)
+

N b
ijNN α

bij
+ γiγγ

= 0 (5.7)

where N b
ijNN is the number of times one observes state j when the hidden state is

i. Eqn 5.6 can be expressed as

log bij +
WijWW

bij
+ gi + 1 = 0 (5.8)
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where

WijWW =
N b

ijNN α

(1 − α)
T∑

t=1
P (qt = i)

gi =
γiγγ

(1 − α)
T∑

t=1
P (qt = i)

.

The solution of Eqn 5.8 is given by

bij = − WijWW

LambertW(−Wije1+gi)
(5.9)

where LambertW(x) = y is the solution of the equation yey = x.
Now we are going to solve for aij . Let’s first look at the derivative of F1FF

with respect to alm.

∂F1FF

∂alm
=

T∑
t=1

M∑
j=1

N∑
i=1

bij log bij
∂P (qt = i)

∂alm
. (5.10)

To solve the above equation, we need to compute ∂P (qt=i)
∂alm

. This can be com-
puted using the following iteration:

∂P (qt = i)
∂alm

=

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
∑
j

∂P (qt−1=j)
∂alm

aji if m �=�� i,∑
j

∂P (qt−1=j)
∂alm

aji + P (qt−1 = l) if m = i
(5.11)

with the initial conditions

∂P (q2 = i)
∂alm

=
{

0 if m �=�� i,
πl if m = i.

(5.12)

Taking the derivative of FLF , with respect to alm, we obtain,

∂F

∂alm
= (1 − α)

T∑
t=1

N∑
i=1

M∑
k=1

bik log bik
∂P (xt = i)

∂alm
+ α

NlmNN

alm
+ βl

where NlmNN is the count of the number of occurrences of qt−1 = l, qt = m in
the data set. The update equation for alm is obtained by equating this quantity
to zero and solving for alm

alm =
αNlmNN

(1 − α)
T∑

t=1

N∑
i=1

M∑
k=1

bik log bik
∂P (xt=i)

∂alm
+ βl

(5.13)

where βl is chosen so that
∑

m alm = 1,∀l.
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3.2 Continuous Maximum Mutual Information HMMs
For the sake of clarity, we will restrict our attention to the case when the

P (x|q) is a single Gaussian. Under this assumption, the HMM is characterized
by the following parameters

P (qt = j|qt−1 = i) = aij

P (xt|qt = i) =
1√

2π|Σi|
exp
(
−1

2
(xt − µi)T Σ−1

i (xt − µi)
)

where Σi is the covariance matrix when the hidden state is i and |Σi| is the de-
terminant of the covariance matrix. Now, for the cost function given in Eqn 5.2,
F1FF and F2FF can be written as

F1FF = −H(X|Q)

=
T∑

t=1

N∑
i=1

∫
P (qt = i) log P (xt|qt = i)dP (xt|qt = i)

=
T∑

t=1

N∑
i=1

P (qt = i)
∫ (

−1
2

log(2π|Σi|)

−1
2
(xt − µi)T Σ−1

i (xt − µi)
)

dP (xt|qt = i)y

=
T∑

t=1

N∑
i=1

P (qt = i)
(
−1

2
log(2π|Σi|) − 1

2

)
,

and,

F2FF = log P (Qobs, Xobs)

=
T∑

t=1

log P (xt|qt) + log πqo
1

+
T∑

t=2

log aqo
t−1,qo

t
.

Following the same steps as for the discrete case, we again form the La-
grange FLF , take its derivative with respect to each of the unknown parameters,
and obtain the corresponding update equations. First consider the means of the
Gaussian:

µi =

T∑
t=1,qt=i

xt

NiNN
(5.14)

where NiNN is the number of times qt = i in the observed data. Note that this
is the standard update equation for the mean of a Gaussian, and it is the same
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as for ML estimation in HMMs. This is because the conditional entropy is
independent of the mean.

Next, the update equation for alm is same as in Eqn 5.13 except for replacing∑
k bik log bik by −1

2 log(2π|Σi|) − 1
2 . Finally, the update equation for Σi is

Σi =

α
T∑

t=1,qt=i
(xt − µi)(xt − µi)T

NiNN α + (1 − α)
T∑

t=1
P (qt = i)

=

T∑
t=1,qt=i

(xt − µi)(xt − µi)T

NiNN + (1−α)
α

T∑
t=1

P (qt = i)
. (5.15)

It is interesting to note that the update equation for Σi in Eqn 5.14 is very
similar to the one obtained when using ML estimation, except for the term in
the denominator (1−α)

α

∑T
t=1 P (qt = i), which can be thought of as a reg-

ularization term. Because of this positive term, the covariance Σi is smaller
than what it would have been otherwise. This corresponds to lower conditional
entropy, as desired.

3.3 Unsupervised Case
The above analysis can easily be extended to the unsupervised case, i.e.

when only Xobs is given and Qobs is not available. In this case, we use the cost
function given in Eqn 5.3. The update equations for the parameters are very
similar to the ones obtained in the supervised case. The only difference is that
now we replace NijNN in Eqn 5.6 by

∑T
t=1,xt=j P (qt = i|Xobs), NlmNN is replaced

in Eqn 5.13 by
∑T

t=2 P (qt−1=l, qt = m|Xobs), and NiNN is replaced in Eqn 5.14
by
∑T

t=1 P (qt = i|Xobs). These quantities can be easily computed using the
Baum-Welch algorithm by means of the forward and backward variables.

4. Discussion
4.1 Convexity

From the law of large numbers, it is known that, in the limit (i.e. as the
number of samples approaches infinity), the likelihood of the data tends to the
negative of the entropy, P (X) ≈ −H(X).
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Therefore, in the limit, the negative of our cost function for the supervised
case can be expressed as

−F = (1 − α)H(X|Q) + αH(X, Q)
= H(X|Q) + αH(Q). (5.16)

Note that H(X|Q) is a strictly concave function of P (X|Q), and H(X|Q)
is a linear function of P (Q). Consequently, in the limit, the cost function
from Eqn 5.15 is strictly convex (its negative is concave) with respect to the
distributions of interest.

In the unsupervised case and in the limit again, our cost function can be
expressed as

F = −(1 − α)H(X|Q) − αH(X)

= −H(X) + (1 − α)(H(X) − H(X|Q))

= −H(X) + (1 − α)I(X, Q) ≈ P (X) + (1 − α)I(X, Q).

The unsupervised case thus reduces to the original case with α replaced by
1 − α. Maximizing F is, in the limit, the same as maximizing the likelihood
of the data and the mutual information between the hidden and the observed
states, as expected.

4.2 Convergence
We analyze next the convergence of the MMIHMM learning algorithm in

the supervised and unsupervised cases. In the supervised case, HMMs are di-
rectly learned without any iteration. However, in the case of MMIHMM we
do not have a closed form solution for the parameters bij and aij . Moreover
these parameters are inter-dependent (i.e. in order to compute bij, we need to
compute P (qt = i) which requires the knowledge of aij). Therefore an itera-
tive solution is needed. Fortunately, the convergence of the iterative algorithm
is extremely fast, as it is illustrated in Figure 5.2. This figure shows the cost
function with respect to the iterations for a particular case of the speaker detec-
tion problem (a) (see section 5.5.2), and for synthetically generated data in an
unsupervised situation (b). From Figure 5.2 it can be seen that the algorithm
typically converges after only 2-3 iterations.

4.3 Maximum A-posteriori View of Maximum Mutual
Information HMMs

The MMIHMM algorithm presented can also be viewed as a maximum a-
posteriori (MAP) algorithm with the conditional entropy acting as a prior on
the space of models.

An HMM is a probability distribution over a set of RV’s, (X, Q). Tradition-
ally, the parameters of HMMs are estimated by maximizing the joint likelihood
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Figure 5.2. Value of the cost function with respect to the iteration number in (a) the speaker
detection experiment; (b) a continuous unsupervised case with synthetic data.

of the hidden states and the observations, P (X, Q). The work in this chapter
can be thought of as an entropic estimation (similar to [Brand, 1998]) frame-
work in the space of possible distributions modeled by an HMM. In contrast to
Brand et al. [Brand, 1998], where the prior is imposed over the parameters of
the model, we impose the priors directly on the model, preferring models with
low conditional entropy. In particular, given a Hidden Markov Model χ, char-
acterized by its parameters {π,A, B}, where π are the initial state probabili-
ties, A is the transition probability matrix, and B is the observation probability
matrix (in the discrete case), the prior probability of the model is assumed to
be P (χ) ∝ eλI(X;Q). Under this prior, the posterior probability can be written
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as:

PpostPP ≡ P (X, Q|χ)P (χ) ∝ P (X, Q|χ)eλI(X,Q)

= P (X, Q|χ)eλ(H(X)−H(X|Q)). (5.17)

The prior P (χ) ∝ eλI(X,Q) is referred to as the entropic prior (modulo a nor-
malization constant) over the space of distributions, preferring distributions
with high mutual information over distributions with low mutual information.
The parameter λ controls the weight of the prior and acts as a smoothing fac-
tor: if λ is very small, all the models are almost equally likely, whereas if λ is
large, models with high mutual information are favored over others. Our goal
with the HMMs is to predict the hidden states based on the observations. Thus,
the mutual information is used to model the dependence between the hidden
and the observed states. This concept of entropic priors could be extended
to other graphical models, by computing the mutual information between the
observed and the query variables. Note how the prior is over the possible dis-
tributions and not over the parameters, as proposed in the past [Brand, 1998].
Given that the dependence of H(X) on the model parameters is weak, we
will approximate (to keep the problem tractable) the objective function with,
PpostPP (χ) ∝ P (X, Q|χ)e−λH(X|Q). The prior distribution (e−λH(X|Q)) can
now be seen as favoring the distributions with low conditional entropy.

This prior has two properties derived from the definition of entropy:

1 It is a bias for compact distributions having less ambiguity, i.e. lower con-
ditional entropy;

2 It is invariant to re-parameterization of the model because the entropy is
defined in terms of the model’s joint and/or factored distributions.

Taking the logarithm of the posterior probability in Eqn 5.16 and dropping
from now on the explicit dependence on χ, we obtain:

F = log(PpostPP ) ≡ log P (X, Q) + λI(X, Q)
= log P (X, Q) + λ(H(X) − H(X|Q)). (5.18)

This leads to the following function to maximize:

F = λI(Q,X) + log P (Xobs, Qobs)
= (1 − α)I(Q, X) + α log P (Xobs, Qobs) (5.19)

where α, provides a way of trading off between the ML (α = 1) and Maximum
Mutual Information (MMI) (α = 0) criteria, and λ = (1−α)

α . Note that Eqn 5.3
is exactly the log-posterior probability expressed in Eqn 5.18.
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5. Experimental Results
In this section, we describe the set of experiments that we have carried out

to obtain quantitative measures of the performance of MMIHMMs when com-
pared to HMMs in various classification tasks. We have conducted experiments
with synthetic and real, discrete and continuous, supervised and unsupervised
data.

5.1 Synthetic Discrete Supervised Data
We generated 10 different datasets of randomly sampled synthetic discrete

data with 4 hidden states and 5 observation values. We used 100 samples for
training and 100 for testing. The training was supervised for both HMMs and
MMIHMMs. MMIHMMs had an average improvement over the 10 datasets
of 12%, when compared to HMMs of exactly the same structure. The opti-
mal α variables ranged from 0.05 to 0.95, depending on the dataset.The best
accuracy of HMMs and MMIHMMs for each of the 10 datasets is depicted
in Figure 5.3, together with the optimal α for each of the datasets. A summary
of the accuracy of HMMs and MMIHMMs is shown in Table 5.1.
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Figure 5.3. Accuracies and optimal value of α for MMIHMM and HMM (star-line) on 10
different datasets of synthetic discrete data.

5.2 Speaker Detection
An estimate of the person’s state is important for the reliable functioning

of any interface that relies on speech communication. In particular, detecting
when users are speaking is a central component of open mike speech-based
user interfaces, specially given their need to handle multiple people in noisy en-
vironments. We carried out some experiments in a speaker detection task. The
speaker detection dataset was the same that appeared in [Garg et al., 2000b].
It consisted of five sequences of one user playing blackjack in a simulated
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casino setup using CRL’s Smart Kiosk [Christian and Avery, 1998]. The se-
quences were of varying duration from 2000 to 3000 samples, with a total
of 12500 frames. The original feature space had 32 dimensions that resulted
from quantizing five binary features (skin color presence, face texture pres-
ence, mouth motion presence, audio silence presence and contextual informa-
tion). Only the 14 most significant dimensions were selected out of the original
32-dimensional space.

The learning task in this case was supervised for both HMMs and MMIH-
MMs. Three were the variables of interest: the presence/absence of a speaker,
the presence/absence of a person facing frontally, and the existence/absence of
an audio signal or not. The goal was to identify the correct state out of four
possible states:

1 no speaker, no frontal, no audio;

2 no speaker, no frontal, and audio;

3 no speaker, frontal, and no audio;

4 speaker, frontal, and audio.

Figure 5.4 illustrates the classification error for HMMs (dotted line) and
MMIHMMs (solid line) with α varying from 0.05 to 0.95 in .1 increments.
Note how in this case MMIHMMs outperformed HMMs for all the values of
α. The accuracies of HMMs and MMIHMMs are summarized in table 5.1. The
accuracy reported in [Garg et al., 2000b] using a bi-modal (audio and video)
DBN was of about 80%.
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Figure 5.4. Error bars for the Speaker Detection data in MMIHMMs and HMMs
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Table 5.1. Classification accuracies for HMMs and MMIHMMs on different datasets

Dataset HMM MMIHMM

Synthetic 55% 66%(αoptimal = .1)
SpeakerID 64% 88%(αoptimal = .75)

Gene 68% 84%(αoptimal = .5)
Emotion 67% 74%(αoptimal = .8)

5.3 Protein Data
Gene identification and gene discovery in new genomic sequences is cer-

tainly an important computational question addressed by bioinformatics sci-
entists. In this example, we tested both HMMs and MMIHMMs in the anal-
ysis of the Adh region in Drosophila. More specifically, part of an annotated
drosophila sequence was used to conduct the experiments and to obtain the
measure for the algorithms’ performance (7000 data points on training and
2000 on testing). MMIHMMs were superior to HMMs for different values of
alpha. The best results were obtained for a value of alpha of 0.5 as Table 5.1
reflects.

5.4 Real-time Emotion Data
Finally we carried out an emotion recognition task using the emotion data

described in [Cohen et al., 2000]. The data had been obtained from a database
of five people that had been instructed to display facial expressions correspond-
ing to the following six types of emotions: anger, disgust, fear, happiness, sad-
ness and surprise. The data collection method is described in detail in [Cohen
et al., 2000]. We used the same video database as the one used in [Cohen et al.,
2000]. It consisted of six sequences of each facial expression for each of the
five subjects. In the experiments reported here, we used unsupervised training
of continuous HMMs and MMIHMMs. The accuracy results of both types of
models are displayed in Table 5.1.

6. Summary
We have presented a new framework for estimating the parameters of Hid-

den Markov Models. We have motivated, proposed, and justified a new cost
function that linearly combines the mutual information and the likelihood of
the hidden states and the observations in an HMM. We have derived the pa-
rameter estimation equations in the discrete and continuous, supervised and
unsupervised cases. Finally, we have shown the superiority of our approach in
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a classification task when compared to standard HMMs in different synthetic
and real datasets.

Future lines of research include automatically estimating the optimal α, ex-
tending the approach to other graphical models with different structures, and
better understanding the connection between MMIHMMs and other informa-
tion theoretic and discriminative approaches. We are also exploring how to
apply our framework to a number of applications and real-life problems.



Chapter 6

ALGORITHM:
MARGIN DISTRIBUTION OPTIMIZATION

In Chapter 3, we have introduced a new, data-dependent, complexity mea-
sure for learning and use it to develop improved generalization bounds. The
complexity measure – projection profile – is a function of the margin distribu-
tion – the distribution of the distance of instances from a separating hyperplane.

In this chapter, we show that the projection profile can be used to derive
a new learning algorithm that optimizes performance with respect to the gen-
eralization error – the Margin Distribution Optimization Algorithm (MDO).
Experimental results on some real world problems (face detection and context
sensitive spelling correction) and some UCI data sets demonstrate the superi-
ority of MDOover Boosting and SVM.

1. Introduction
The study of generalization abilities of learning algorithms and their de-

pendence on sample complexity is one of the fundamental research efforts in
learning theory. Understanding the inherent difficulty of learning problems al-
lows one to evaluate the possibility of learning in certain situations, estimate
the degree of confidence in the predictions made, and is crucial in understand-
ing, analyzing, and developing improved learning algorithms. In this chapter,
we show how the bounds developed in Chapter 3 can be applied towards de-
veloping new learning algorithms.

As introduced in Chapter 3, projection profile of data sampled according to
a distribution D, is the expected amount of error introduced when a classifier
h is randomly projected, along with the data, into k-dimensions. It was shown
to be captured by the following quantity:

ak(D, h) =
∫

x

∫∫
∈D

u(x)dD,
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where

u(x) = min
(

3 exp
(
− (ν(x))2k

8(2 + |(ν(x))|)2
)

,
2

kν(x)2
, 1
)

(6.1)

and ν(x) is the distance between x and the classifying hyperplane defined by
h, a linear classifier for D. The sequence

P(D, h) = (a1(D, h), a2(D, h), . . .)

is the projection profile of D. Note that our analysis does not assume linearly
separable data.

The projection profile turns out to be quite informative, not just in theory (as
was shown in Chapter 3) but even in practice. As we show now, the projection
profile of the observed data with respect to a learned classifier can be directly
optimized, yielding a new learning algorithm for linear classifiers, MDO (Mar-
gin Distribution Optimization), that, as we justify theoretically and show ex-
perimentally, outperform existing algorithms for linear functions such as Per-
ceptron, SVM, and boosting. The Margin Distribution Optimization (MDO)
algorithm exploits an explicit dependency on the distribution of the geometric
distances of points from the classifier – the margin distribution of the data –
rather than only the extreme points as is done in algorithms like SVM. This is
significant when most of the data is far from the optimal classifier - only very
few points, those that determine the margin, are close to it. Our experiments
reveal that this is indeed the case in many real applications. In these cases,
as was shown, our bound is better than existing bounds, and in some cases is
informative for very high dimensional data. As a result, MDO outperforms
existing algorithms.

In this chapter, we will follow the same notation as in Chapter 3.

2. A Margin Distribution Based Bound
As shown in Chapter 3, for a classifier h and data points x, ν(x) = hT x can

be thought of as the geometric distance between x and the hyperplane orthog-
onal to h that passes through the origin (provided ||h|| = ||x|| = 1). Given a
distribution on data points x, this induces a distribution on their distance from
the hyperplane induced by h, which is referred to as the margin distribution.
For a classifier whose decision is based on sign(hT x), the following theorem
was derived in Chapter 3.

Theorem 6.1 Let S = {(x1, y1), . . . , (x2m, y2m)} be a set of n-
dimensional labeled examples and h a linear classifier. Then, for all constants
0 < δ < 1; 0 < k, with probability at least 1 − 4δ, the expected error of h is
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bounded by

E ≤ Ê(S, h) + min
k

⎧⎨⎧⎧⎩⎨⎨µk + 2

√
(k + 1) ln me

k+1 + ln 1
δ

2m

⎫⎬⎫⎫⎭⎬⎬+
log m

m
(6.2)

where

µk =
2

mδ

2m∑
j=1

min

{
3 exp

(
− ν2

jν k

8(2 + |νjν |)2
)

,
2

ν2
jν k

, 1

}
,

and
νjν = hT xj .

Informally, it indicates that if “many” of the high dimensional points are
classified with high confidence, that is, |hT x| is large for these, then one does
not need as many training examples for good generalization as predicted by
VC-theory or margin based theory.

3. Existing Learning Algorithms
In this chapter, we focus our attention on linear learning algorithms. It has

been shown that any learning algorithm can be mapped to some linear algo-
rithm in high dimensional space and thus arguing that our analysis is general
enough. The aim of any learning algorithm is to learn a classifier that achieves
best classification performance on the data sampled according to a certain dis-
tribution. However, since only a limited amount data is available during the
training phase, intuitively one would expect to choose a classifier that will do
the best job on the training data. This intuition is further attested by the Vap-
nik’s result [Vapnik, 1998] on Empirical risk minimization principle.

Some of the popular learning algorithms are Perceptron [Rosenblatt, 1958],
Winnow [Littlestone, 1987], and SVM [Vapnik, 1998]. All three algorithms
learn a linear classifier. The first two learn in an online fashion whereas the
last one is a batch mode learning algorithm. In all three cases learned classifier
is a hyperplane and the classification is done by computing the sign of the
dot product of the classifier with the data point (that is one which side of the
hyperplane where data lies). If the data is noisy then, one may argue that the
best classifier is the one with the minimum error on the training set. However,
this gets tricky when there are a number of classifier with the same error.

For simplicity, let us consider the case when the training data is linearly
separable. Fig. 6.1 shows the training data with “+” corresponding to positive
data and “−” corresponding to negative data. The task is to learn a classifier
that will be able to classify this data automatically with the same labels. It turns
out that in this case there are a number of linear classifiers that can do perfect
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Figure 6.1. A graph showing the training data in two dimensional space with “+” correspond-
ing to positive class and “−” corresponding to negative class.

classification on the training data. Fig. 6.2(a) shows some of such classifiers.
Learning algorithms like Perceptron and winnow are mistake driven algorithms
that learn in the online fashion. The only criteria that drives the learning is the
mistake on the training dataset and the learning stops once a classifier is found
that has zero error on the training data. As such depending upon the initializa-
tion and the order in which data is presented these algorithms will learn one
of the classifier among the ones shown in Fig. 6.2(a) without preferring one
over other. Fig. 6.2(b) shows a possible classifier that may be learned by these
algorithms.

This is where support vector machine (SVM) distinguishes itself from other
algorithms by choosing a classifier that separates the data with the maximum
margin. The margin (as defined in Chapter 3) is the distance of the closest
point to the learned hyperplane. SVM focuses on only the points closest to
the hyperplane and chooses the plane such that it separates the data with the
maximum margin. Fig. 6.3(a) shows the learned hyperplane for this data by
SVM algorithm. The circled points are the support vectors (the data points
closest to the hyperplane) which played the deciding role in the choice of the
classifier. Interestingly enough, even if only these circled points were the part
of the dataset, then the same classifier will be obtained. Although on one hand,
one can argue that this is a good property of SVM, it turns that it can be very
susceptible to the noise in the training data. Fig. 6.3(b) shows how by change
of a single data point a very different classifier may be learned.

Thus, the notion of margin used in SVM makes it extremely sensitive to
the noise in the data and is problematic when the data is non-separable. Re-
searchers have got around this problem by introducing slack variables and ig-
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(a)

(b)

Figure 6.2. (a) Possible linear classifiers that can classify the data without making error. (b)
A possible classifier that will be chosen by Perceptron learning algorithm.
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(a)

(b)

Figure 6.3. (a) The hyperplane that will be learned by SVM. The circled points correspond to
the support vectors. (b) The learned hyperplane when a single datapoint is changed.
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Figure 6.4. The hyperplane that may be a better choice then the one learned by SVM as in this
case most of the data points (except for a few) are further apart from the hyperplane.

noring some of the closest point in an ad hoc fashion, but this extreme notion
of margin still drives the optimization. Fig. 6.4 shows a hyperplane that tries
to maximize the distance between all the datapoints and not just the closest
points. This is the hyperplane that will be learned by the algorithm presented
in the next section and our results on many standard data sets and some real
world problems show this is indeed a better hyperplane.

4. The Margin Distribution Optimization (MDO)
Algorithm

Along with generalization bounds presented in Chapter 3, our analysis pro-
vides guidance as to how to set up an optimization criterion for a linear clas-
sifier in order to optimize its generalization properties. We use this below to
describe the Margin Distribution Optimization (MDO) algorithm.

The projection profile introduced can be viewed as assigning a weight to
each point as a function of its distance from the hyperplane. The weight is the
probability of making an error on that point when it is projected, along with
the hyperplane, to some low dimensional space. Eqn. 3.4 relates this quantity,
µk, directly to the generalization error. The smaller this quantity is, the smaller
is the generalization error.

The new learning algorithm we propose, the Margin Distribution Optimiza-
tion (MDO) algorithm, attempts to choose a classifier with the best projection
profile (least projection error), while at the same time minimizing the classi-
fication error. This is achieved by formulating an optimization problem with
two terms, one which depends on the projection profile and the second on the
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classification performance. For the linearly separable case, one can formulate
the Lagrange equations as follows:

L(h, α) =
m∑

i=1

exp
(
−k(hT xi)2

72||h||2
)
−

m∑
i=1

αiyih
T xi +

m∑
i=1

αi. (6.3)

Note that instead of employing the true projection profile, we use only the
exponential term (which anyhow dominates for large enough values of k). The
reason is that the second term is ill-behaved for points with extremely small
margin.

Extending this to the non linearly separable case is straight forward, by in-
troducing the slack variables. However, in our initial analysis, we adopt the
following formulation:

L(h, α)=
m∑

i=1

exp
(
−k(hT xi)2

72||h||2
)
−

m∑
i=1

αi

(
yih

T xi + ξi||h||
)
+

m∑
i=1

αi (6.4)

where ξi is a positive number. Note that we are multiplying ξi with ||h||.
This is done as now one can think of ξi as the slack in terms of the normal-

ized margin (the data is already assumed to belong to unit ball in n dimensional
space). One can either obtain the ξi by incorporating them in the optimization
problem or use a search strategy over a holdout set. In our case, we assume
that ξi = c for all i and search for the best value of c and k (projection dimen-
sion) over a holdout set. Intuitively, it means that we allow for errors on points
which are at a distance less than ξi from the hyperplane.

4.1 Comparison with SVM and Boosting
The difference between the above formulation and the SVM formula-

tion [Burges, 1998] is primarily in the objective function (the first term in the
above Lagrangian). In the SVM formulation the objective function minimizes
the norm ||h|| whereas here we minimize the projection profile.

It is interesting to note that boosting can also be thought of as a linear classi-
fier (over the weak learners) which optimizes a somewhat similar cost function
–
∑

i exp(−yih
T xi) [Schapire and Singer, 1999] and therefore, we include it

in our comparison below.

4.2 Computational Issues
The above optimization problem can be solved using the gradient descent

algorithm. The gradients can be computed easily by taking the derivative with
respect to each of the variables. However, the non-convexity of the objective
function makes it a hard problem and the gradient descent in this case will only
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Table 6.1. Results comparing the performance of Perceptron, SVM, boosting, and MDO. The
first dataset is the synthetic data. The second dataset is the standard Compaq face dataset. Next
four datasets are from UCI ML repository. The last two datasets are from the context sensitive
spelling correction problem. As seen, in all cases, MDO’s results are comparable to state of art
results for these datasets.

Datasets Perceptron Boosting SVM MDO
Synthetic Data 73.25% 73.75% 78.50% 79.75%
Face Detection 89.5% 91.5% 91.5% 95.0%

Mushroom (UCI) 83.61% 83.77% 87.96% 89.14%
Liver (UCI) 56.88% 59.69% 60.94% 63.44%

Ionosphere (UCI) 81.90% 84.39% 84.84% 85.29%
Heart (UCI) 82.37% 83.05% 83.04 % 84.41%

peace & piece (Spelling) 70.50% 71.98% 73.95% 74.33%
being & begin (Spelling) 90.36% 91.33% 91.57% 92.05%

converge to a local minima. This implies that the solution obtained will not be
the optimal solution and will depend highly on the starting point. There are
two approaches that one can adopt:

1 try different starting points and choose the solution that is the best among
the ones obtained;

2 Start from a good starting point.

We have adopted the latter approach in solving this optimization problem.
Our approach first searches for a feasible solution (in the non-separable case
– an admissible solution); maximizing the objective function using gradient
descent in the space of feasible solution starts there. MDO starts by searching
for the best hyperplane using the Perceptron algorithm (which is very fast). The
learned classifier (output of the Perceptron algorithm) is then used as initial
guess. At each step of the gradient descent, we make a move in the steepest
direction, while ensuring the feasibility of the new solution (the constraints in
terms of slack variables are satisfied). Typically, the algorithm converges in a
small number of steps.

5. Experimental Evaluation
We did extensive evaluation of the algorithm on various datasets and com-

pared its performance to SVM, boosting, and Perceptron learning algorithms.
We evaluated MDO on synthetic data (for the linearly separable case), two

large scale real world problems – face detection [Pavlovic and Garg, 2001] and
context sensitive spelling correction [Golding and Roth, 1999], and a number
of datasets from UCI-ML repository. The classification performance is com-
pared to SVM and boosting (over the same features). We use the same gradient
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descent algorithm and the same search strategies for ξi for both boosting and
SVM. Essentially, by using the different objective function, we obtain differ-
ent algorithms. For synthetic data, we randomly generated 1000 dimensional
examples labeled according to a linear classifier (linearly separable data). The
next experiment was done using face detection data [Pavlovic and Garg, 2001].
This is 756 dimensional data with 2000 examples. The spelling data is taken
from the pruned data set of [Golding and Roth, 1999]. Two particular exam-
ples of context sensitive spelling correction being & begin and peace & piece
are considered. For details on other dataset see [Murphy, 1994]. In all ex-
periments, data was divided into three categories training (80%), holdout set
(10%), and test set (10%). Five fold cross-validation was done and the average
results are reported in Table 6.1. It is evident that MDO has consistently better
performance than Perceptron, boosting, and SVM.

6. Conclusions
We have presented a new analysis method for linear learning algorithms

that uses random projections and margin distribution analysis. The complexity
measure (projection profile) presented in Chapter 3, has been used to develop
a new learning algorithm for linear functions, which optimizes a measure di-
rectly related to the generalization error. The results are based on a novel use
of the margin distribution of the data relative to the learned classifier, differ-
ent than the typical use of the notion of margin in machine learning. Conse-
quently, the resulting algorithm is not sensitive to small number of samples in
determining the optimal hyperplane. Algorithmically, although we have given
an implementation of the new algorithm MDO, one of the main direction of
future research is to study it further, as well as to investigate other algorithmic
implications of the ideas presented here.



Chapter 7

ALGORITHM:
LEARNING THE STRUCTURE OF BAYESIAN
NETWORK CLASSIFIERS

In Chapter 4, we presented a new analysis that showed under what condi-
tions unlabeled data can be used in learning to improve classification perfor-
mance. We showed that if these conditions are violated the use of unlabeled
data can detrimental to the classification accuracy.

The goal of this chapter is to discuss the implications of this analysis to a
specific type of classifiers, Bayesian networks. We investigate possible strate-
gies for choosing a good graphical structure of the Bayesian networks and
argue that in many problems it is necessary to search for such a structure. As
a consequence, we propose a new structure learning algorithm that can utilize
the unlabeled data to improve classification.

1. Introduction
Bayesian networks can represent joint distributions in an intuitive and effi-

cient way; as such, Bayesian networks are naturally suited for classification.
We can use a Bayesian network to compute the a-posteriori probability of a set
of labels given the observable features, and then we classify the features with
the most probable label.

A Bayesian network classifier represents dependencies among features and
labels by a directed acyclic graph. This graph is the structure of the Bayesian
network. Typically, Bayesian network classifiers are learned with a fixed struc-
ture — the paradigmatic example is the Naive Bayes classifier. More flexi-
ble learning methods allow Bayesian network classifiers to be selected from a
small subset of possible structures — for example, the Tree-Augmented-Naive-
Bayes (TAN) structures [Friedman et al., 1997]. After a structure is selected,
the parameters of the classifier are usually learned using maximum likelihood
estimation. In many cases, the selected structure does not match the structure
that is generating the data, resulting in classifiers that cannot achieve the op-
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timal Bayes error rate, even with infinite labeled training data (e.g., the Naive
Bayes classifier).

The analysis in Chapter 4 indicates that the assumed structure is a key issue
when learning Bayesian network classifiers with labeled and unlabeled data; an
incorrect structure can have dire consequences. What we want to stress is this:
However satisfactory a Naive Bayes (or similar) classifier may be in supervised
learning, it is almost certainly a very sub-optimal solution in semi-supervised
learning. The goal of this chapter is to discuss methods that can make positive
use of unlabeled data when learning Bayesian Network classifiers.

Section 7.3 discusses the use of unlabeled data to switch between Bayesian
networks that are simple and can be learned efficiently, namely Naive Bayes
and TAN classifiers. In cases where relatively mild changes in structure still
suffer from performance degradation from unlabeled data, there are different
approaches that can be taken; discard the unlabeled data, try to learn the struc-
ture, or use the alternative of actively labeling some of the unlabeled data (Sec-
tion 7.8). We discuss and compare different structure learning methods: likeli-
hood score-based methods, and discusss independence-based methods (devel-
oped for semi-supervised learning by Marcelo Cirelo).

We also propose a stochastic structure search method based on Metropolis-
Hastings sampling [Metropolis et al., 1953] over a measure induced by clas-
sification performance (Section 7.5). We argue that under certain conditions,
the algorithm finds a Bayesian network that minimizes the classification error.
We further use the VC dimension of Bayesian network classifiers to control the
capacity and avoid overfitting to the training data during the search. Bayesian
networks have an enormous advantage over less “structured” approaches; the
existence of an underlying graphical structure allows us to explore the space of
joint distributions in an organized fashion. Our search method seems to be the
first that focuses solely on classification performance.

The experiments in Section 7.6 both for fully labeled sets and labeled and
unlabeled sets, compare the different algorithms, pointing to their strengths
and weaknesses.

2. Bayesian Network Classifiers
We consider classifiers that represent p(C,X) using Bayesian net-

works [Pearl, 1988]. A Bayesian network is composed of a directed acyclic
graph in which every node is associated with a variable XiX and with a condi-
tional distribution p(XiX |Πi), where Πi denotes the parents of XiXX in the graph.
The joint probability distribution is factored to the collection of conditional
probability distribution of each node in the graph as:

p(X1, . . . , XnX ) =
n∏

i=1

p(Xi|Πi).
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The directed acyclic graph is the structure, and the distributions p(XiXX |Πi)
represent the parameters of the network. Consider now that data generated by
a distribution p(C,X) are collected. We say that the assumed structure for a
network, S′, is correct when it is possible to find a distribution, p(C,X|S′),
that matches the distribution that generates data p(C,X); otherwise, the struc-
ture is incorrect1,2.

A Bayesian network classifier is a generative classifier when the class vari-
able is an ancestor of some or all features. A Bayesian network classifier is
diagnostic, when the class variable has non of the features as descendants. As
we are interested in using unlabeled data in learning the Bayesian network
classifier, we restrict ourselves to generative classifiers, and exclude structures
that are diagnostic.

Typically, Bayesian network classifiers are learned with a fixed structure –
the paradigmatic example is the Naive Bayes classifier. More flexible learn-
ing methods allow Bayesian network classifiers to be selected from a small
subset of possible structures – for example, the Tree-Augmented-Naive-Bayes
structures [Friedman et al., 1997]. After a structure is selected, maximum like-
lihood is the common estimator for learning a network’s parameters. Given
missing data in our training set and for a fixed structure, we use the EM algo-
rithm [Dempster et al., 1977] to learn the parameters of the network.

Given a Bayesian network classifier with parameter set Θ, the optimal clas-
sification rule under the maximum likelihood (ML) framework to classify an
observed feature vector of n dimensions, X ∈ Rn, to one of |C| class labels,
c ∈ {1, ..., |C|}, is given as:

ĉ = argmax
c

P (X|c; Θ). (7.1)

There are two design decisions when building Bayesian network classifiers.
The first is to choose the structure of the network, which will determine the
dependencies among the variables in the graph. The second is to determine
the distribution of the features. The features can be discrete, in which case the
distributions are probability mass functions. The features can also be contin-
uous, in which case one typically has to choose a distribution, with the most
common being the Gaussian distribution. Both these design decisions deter-
mine the parameter set Θ which defines the distribution needed to compute the
decision function in Eq. (7.1).

In the following, we present the basic issues concerning the simple Bayesian
networks models: Naive Bayes and TAN.

1These definitions follow directly from the definitions of correct and incorrect models described in Chap-
ter 4.
2There is not necessarily a uniques correct structure, e.g., if a structure is correct (as defined above), all
structures that are from the same Markov equivalent class are also correct since casuality is not an issue.
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2.1 Naive Bayes Classifiers
Naive Bayes classifier is a probabilistic classifier in which the features are

assumed independent given the class. Naive Bayes classifiers have a very good
record in many classification problems, although the independence assump-
tion is usually violated in practice. The reason for the Naive Bayes success as
a classifier is attributed to the small number of parameters needed to be esti-
mated. Recently, Garg and Roth [Garg and Roth, 2001b] showed using infor-
mation theoretic arguments additional reasons for the success of Naive Bayes
classifiers. An example of a Naive Bayes classifier is given in Figure 7.1.

Figure 7.1. An example of a Naive Bayes classifier.

If the features in X are assumed to be independent of each other conditioned
upon the class label c (the Naive Bayes framework), Eq. (7.1) reduces to:

ĉ = argmax
c

n∏
i=1

P (xi|c; Θ). (7.2)

Now the problem is how to model P (xi|c; Θ), which is the probability of
feature xi given the class label. In practice, the common assumption is that
we have a Gaussian distribution and the ML can be used to obtain the estimate
of the parameters (mean and variance). However, the Gaussian assumption
is often invalid and the Cauchy distribution was proposed as an alternative
model [Sebe and Lew, 2003]. This model was referred to as Cauchy Naive
Bayes. The difficulty of this model is in estimating the parameters of the
Cauchy distribution.

The Naive Bayes classifier was successful in many applications mainly due
to its simplicity. Also, this type of classifier is working well even if there is not
too much training data. However, the strong independence assumption may
seem unreasonable in some cases. Therefore, when sufficient training data is
available we want to learn and to use the dependencies present in the data.
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2.2 Tree-Augmented Naive Bayes Classifiers
In the TAN classifier structure the class node has no parents and each feature

has as parents the class node and at most one other feature, such that the result
is a tree structure for the features (see Figure 7.2). Friedman et al. [Friedman
et al., 1997] proposed using the TAN model as a classifier, to enhance the
performance over the simple Naive Bayes classifier. TAN models are more
complicated than the Naive Bayes, but are not fully connected graphs. The
existence of an efficient algorithm to compute the best TAN model makes it a
good candidate in the search for a better structure over the simple NB.

Figure 7.2. An example of a TAN classifier.

Learning the TAN classifier is more complicated. In this case, we do not fix
the structure of the Bayesian network, but we try to find the TAN structure that
maximizes the likelihood function given the training data out of all possible
TAN structures.

In general, searching for the best structure has no efficient solution, how-
ever, searching for the best TAN structure does have one. The method is using
the modified Chow-Liu algorithm [Chow and Liu, 1968] for constructing tree
augmented Bayesian networks [Friedman et al., 1997]. The algorithm finds
the tree structure among the features that maximizes the likelihood of the data
by computation of the pairwise class conditional mutual information among
the features and building a maximum weighted spanning tree using the pair-
wise mutual information as the weights of the arcs in the tree. The problem
of finding a maximum weighted spanning is defined as finding the set of arcs
connecting the features such that the resultant graph is a tree and the sum of
the weights of the arcs is maximized. There have been several algorithms pro-
posed for building a maximum weighted spanning tree [Cormen et al., 1990]
and in our implementation we use the Kruskal algorithm described in Box 7.1.

The five steps of the TAN algorithm are described in Box 7.2. This proce-
dure ensures to find the TAN model that maximizes the likelihood of the data
we have. The algorithm is computed in polynomial time (O(n2logN), with N
being the number of instances and n the number of features).
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Box 7.1 (Kruskal’s Maximum Weighted Spanning Tree
Algorithm)
Consider an undirected graph with n vertices and m edges, where each
edge (u, v) connecting the vertices u and v, has an associated positive
weight w(u,v). To construct the maximum weighted spanning tree graph
follow the following steps:

1 Create an empty set of edges called spanningTree.

2 For each vertex v in the graph, create a set containing v.

3 Sort all edges in the graph using the weights in the edges from highest
to lowest.

4 In order of the sorted edges, for each edge (u, v) if the set that contains
u is different from the set that contains v:

Put the edge (u, v) in spanningTree

Make u and v belong to the same set (union of sets).

5 spanningTree contains all the edges in the maximum weighted
spanning tree.

Box 7.2 (TAN learning algorithm)

1 Compute the class conditional pair-wise mutual information between
each pair of features, (XiXX , XjX ) for all i, j ∈ {1, ..., n},

IPI (XiXX , XjX |C) =
∑

Xi,XjX ,C

P (xi, xj , c) log
P (xi, xj |c)

P (xi|c)P (xj |c) , i �=�� j.

2 Build a complete undirected graph in which each vertex is a variable,
and the weight of each edge is the mutual information computed in
Step 1.

3 Build a maximum weighted spanning tree (MWST) (see Box 7.1).

4 Transform the undirected MWST of Step 3 to a directed graph by
choosing a root node and pointing the arrows of all edges away from
the root.

5 Make the class node the parent of all the feature nodes in the directed
graph of Step 4.
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The learning algorithm for the TAN classifier as proposed by Friedman et
al. [Friedman et al., 1997] relies on computations of the class conditional mu-
tual information of discrete features. In our problem, the features are contin-
uous, and computation of the mutual information for a general distribution is
very complicated. However, if we assume that the features are Gaussian, com-
putation of the conditional mutual information is feasible and is given by (see
Box 7.3 for details):

I(XiXX , XjX |C) = −1
2

|C|∑
c=1

P (C = c) log(1 − ρ2
(ij)|c), (7.3)

where ρ(ij)|c is the correlation coefficient between XiXX and XjX given the class
label c. We replace the expression for the mutual information in Step 1 of the
TAN algorithm with the expression in Equation (7.3), to find the maximum
likelihood Gaussian-TAN classifier.

The full joint distribution of the Gaussian-TAN model can be written as:

p(c, x1, x2, ..., xn) = p(c)
n∏

i=1

p(xi|Πi, c), (7.4)

where Πi is the feature that is the additional parent of feature xi. Πi is empty
for the root feature in the directed tree graph of Step 4 in the Kruskal’s algo-
rithm.

Using the Gaussian assumption, the probability density functions (pdf’s) of
the distribution in the product above are:

p(XiXX = xi|Πi, C = c) = NcNN (µxi + a · Πi, σ
2
xi
· (1 − ρ2)), (7.5)

where NcNN (µ, σ2) refers to the Gaussian distribution with mean and variance
given that the class is c, µxi , σ

2
xi

are the mean and variance of the feature xi,

ρ =
COV (xi, Πi)

σxiσΠi

is the correlation coefficient between xi and Πi, and

a =
COV (xi, Πi)

σ2
Πi

.

For further details on the derivation of the parameters see Box 7.3.
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Box 7.3 (Gaussian-TAN Parameters Computation)
The mutual information between continuous random variables, X, Y is
given as [Kay, 1990; Starks and Woods, 1994]:

I(X, Y ) =
∫ ∫

p(x, y) log
(

p(x, y)
p(x)p(y)

)
dxdy = H(x)+H(y)−H(x, y)

where H(·) is the differential entropy, analogous to the entropy of discrete
variables, defined as:

H(Z) = −
∫

p(z) log p(z)dz. (7.6)

Here p(z) is the probability density function of Z and the integral is over
all dimensions in z.
For a Gaussian random vector Z of N dimensions with covariance matrix
Σ, by inserting the Gaussian pdf to Eq. (7.6) and taking the integral, we
get that the differential entropy of Z is:

H(Z) =
1
2

log
(
(2πe)N |Σ|) (7.7)

where |Σ| is the determinant of Σ.
Suppose now that X and Y are jointly Gaussian. Then,

p(X, Y ) ∼ N

([
µX

µY

]
, ΣXY

)
(7.8)

where ΣXY is the covariance matrix given as:

ΣXY =
[

σ2
X COV (X, Y )

COV (X, Y ) σ2
Y

]
. (7.9)

Using Eqs. (7.7) and (7.6) we get that the mutual information of X and Y
is given by:

I(X, Y ) = −1
2

log
(

σ2
Xσ2

Y

σ2
Xσ2

Y − COV (X, Y )2

)

= −1
2

log

⎛⎝⎛⎛ 1

1 − COV (X,Y )2

σ2
Xσ2

Y

⎞⎠⎞⎞=−1
2

log
(

1
1 − ρ2

XY

)
(7.10)

where ρXY = COV (X,Y )2

σ2
Xσ2

Y
is the correlation coefficient between X and Y .
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In the TAN classifiers, the class is the parent of all features, and the
features are Gaussian given a class label. Thus all the results above apply
with an understanding that the distributions are conditioned on the class
label (which is omitted for clarity). The class conditional mutual
information between the pair X and Y is derived as follows:

I(X, Y |C) =
|C|∑
c=1

∫ ∫
p(x, y, c) log

(
p(x, y|c)

p(x|c)p(y|c)
)

dxdy

=
|C|∑
c=1

∫ ∫
p(c)p(x, y|c) log

(
p(x, y|c)

p(x|c)p(y|c)
)

=
|C|∑
c=1

p(c)I(X, Y |C = c)

= −1
2

|C|∑
c=1

p(c) log

(
1

1 − ρ2
XY |c

)
. (7.11)

After finding the TAN structure, suppose that we find that feature X is the
parent of Y . Given the class label, X and Y are jointly Gaussian with
mean vector and covariance as defined in Eqs. (7.8) and (7.9) (again
omitting the conditioning on the class variable for clarity). Since X is the
parent of Y , we are interested in finding the parameters of the conditional
distribution p(Y |X) as a function of the parameters of the joint
distribution. Because X and Y are jointly Gaussian, Y |X is also
Gaussian. Using p(X, Y ) = p(X)p(Y |X) and the Gaussian pdf, after
some manipulations we get:

p(Y |X) =
p(X, Y )
p(X)

=
1

(2πσ2
Y (1 − ρ2

XY ))1/2
exp
(
−(y − µY − ax)2

2σ2
Y (1 − ρ2

XY )

)
= N

(
µY + ax, σ2

Y (1 − ρ2
XY )
)

(7.12)

where a = COV (X,Y )
σ2

X
.
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After learning the structure, the Gaussian-TAN classifier’s added complex-
ity compared to the Naive Bayes classifier is small; there are |C| · (n−1) extra
parameters to estimate (the covariances between features and their parents).
For learning the structure, all pairwise mutual information are estimated using
the estimates for the covariances.

3. Switching between Models: Naive Bayes and TAN
Classifiers

The conclusion of Chapter 4 indicates the importance of obtaining the cor-
rect structure when using unlabeled data in learning the classifier. If the correct
structure is obtained, unlabeled data improve a classifier; otherwise, unlabeled
data can actually degrade performance. Somewhat surprisingly, the option of
searching for structures has not been proposed by researchers that have previ-
ously witnessed the performance degradation. Apparently, performance degra-
dation was attributed to unpredictable, stochastic disturbances in modeling as-
sumptions, and not to mistakes in the underlying structure — something that
can be detected and fixed.

One attempt to overcome the performance degradation from unlabeled data
could be to switch models as soon as degradation is detected. Suppose then that
we learn a classifier with labeled data only, and we observe a degradation in
performance when the classifier is learned with labeled and unlabeled data. We
can switch to a more complex structure at that point. As we saw in Chapter 4,
bias and variance play an important role in the utilization of unlabeled data.
To preserve the balance between the bias from the true distribution and the
variance we might want to use a small subset of simple models which can be
learned efficiently.

We start with the simplest generative structure, the Naive Bayes. Despite
having a non-zero classification bias, the Naive-Bayes classifier performs well
for many cases, when trained with labeled data. The success is explained in the
literature using several arguments; e.g., trade-offs between classification bias
and variance when learning with scarce data [Friedman, 1997] and tendency
of many distributions to be close (in the Kullback-Leibler sense) to the product
distribution of the Naive Bayes classifier [Garg and Roth, 2001b]. However, in
semi-supervised learning, the same success is not always observed (see exper-
iments in this chapter and in Chapter 4).

If a problem is such that Naive Bayes classifiers suffer from performance
degradation with unlabeled data, we should then switch to a larger family of
models. We can decide to switch using the test described in Section 4.6.4.
The most promising such family is represented by TAN classifiers, in which
the class variable is a parent of all of the observables, and the observables are
connected so as to form a tree. Friedman et al. [Friedman et al., 1997] showed
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that learning the most likely TAN structure can be done efficiently using the
Chow-Liu algorithm [Chow and Liu, 1968].

The TAN algorithm assumes that there is no missing data. To solve the
maximization problem when there are missing labels, it is possible to develop
an EM algorithm that finds the best TAN given both labeled and unlabeled
data. Meila [Meila, 1999] developed the EM equations for the task of build-
ing the best set of minimum spanning tree for a classification problem. In
her setup, there are no labeled records and the number of classes can vary.
The problem she solves is basically a clustering problem and is not directly
related to the semi-supervised learning problem, but the EM algorithm she de-
veloped applies directly to the semi-supervised learning problem. The EM
algorithm for TAN models given labeled and unlabeled data follows directly
from Meila’s [Meila, 1999] MixTreeS algorithm; we call the resulting scheme
EM-TAN [Cohen et al., 2002a]. The general steps of EM-TAN are shown in
Box 7.4. The algorithm enjoys the efficiency of the supervised TAN algorithm,
while guaranteeing convergence to a local maximum of the likelihood function.

Box 7.4 (EM-TAN Algorithm)

An initial TAN structure and parameters are set. The class variable is
always the root node. The initial TAN is either arbitrarily chosen or is
found by estimating the TAN model with only the labeled records and
the TAN algorithm (Box 7.2).

Iterate until the change in the likelihood between the current iteration
and previous falls under a threshold:

– E-Step: Compute expected value of the missing labels using the
current model parameters.

– M-Step:

∗ Compute the class conditional mutual information between all
pairs of feature variables using the fractional counts from the

∗ Construct the MWST using the Chow-Liu algorithm.
∗ Compute all of the parameters of the new model given the

MWST found in the previous step.

We have observed that EM-TAN produces classifiers that in practice regu-
larly surpass Naive Bayes classifiers. Still, performance degradation can still
occur both for Naive Bayes and TAN (as actually observed in Section 7.6). In
such cases, we are faced with several options. The first is to discard the unla-
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beled data and use only the available labeled samples. The other options are
discussed in the next sections.

4. Learning the Structure of Bayesian Network Classifiers:
Existing Approaches

If we observe performance degradation, we may try to find the “correct”
structure for our Bayesian network classifier – if we do so, we can profitably
use unlabeled data. Alas, learning Bayesian network structure is not a trivial
task. In this section, we investigate the behavior of structure learning algo-
rithms in the context of semi-supervised learning, presenting new algorithms
where needed, and deriving new techniques that improve on existing methods.
Experiments validating such claims are presented in Section 7.6.

4.1 Independence-based Methods
The first class of structure learning methods we consider is the class of

independence-based methods, also known as constraint-based or test-based
methods. There are several such algorithms; a relevant subset is composed
of the PC algorithm [Spirtes et al., 2000], the IC algorithm [Pearl, 2000], and
the Cheng-Bell-Liu algorithms (CBL1 and CBL2) [Cheng et al., 1997]3. All
of them can obtain the correct structure if there are fully reliable independence
tests available; however not all of them are appropriate for classification. For
example, the PC algorithm starts with a fully connected network, and has the
tendency to generate structures that are “too dense” (consequently requiring
many parameters to be learned, negatively affecting the variance of estimated
quantities and increasing the classification error).

The CBL1 and CBL2 algorithms seem particularly well-suited for classifi-
cation, as they strive to keep the number of edges in the Bayesian networks as
small as possible. They won the ACM KDD cup 2001 data mining Competi-
tion, a considerable feat. Moreover, the performance of CBL1 on labeled data
only has been reported to surpass the performance of TAN, even with arbitrary
node orderings [Cheng and Greiner, 1999]. Conceptually CBL1 and CBL2 are
similar, with CBL1 requiring an ordering to start. We used conditional inde-
pendence (CI) tests based on mutual information: we declare variables X and
Y to be independent given variable Z when their mutual information condi-
tional on Z is smaller than a constant ε, which we set to 0.01.

A few modifications are necessary to adapt CBL1 and CBL2 for semi-
supervised learning. First, the algorithms are started with a Naive Bayes classi-
fier, and in CBL1 arcs from the class variable to observed variables are allowed

3The work on the CBL algorithms was done by primarily by Marcelo C. Cirelo who investigated and
implemented the algorithm. This subsection is a summary of his work and conclusions.
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to be removed, leading to some restricted forms of feature selection. More im-
portantly, a simple method to generate orderings for CBL1 is developed by
generating a fixed number of random orderings, and running the algorithm
for all of them. Because CBL1 is quite fast, hundreds of candidate orderings
are easily tested, selecting the one that produces the best classifier (using either
testing data or cross-validation to select the classifier, depending on the amount
of available labeled data).

Because independence-based algorithms like CBL1 do not explicitly op-
timize a metric, they cannot handle unlabeled data directly through an opti-
mization scheme like EM. To handle unlabeled data, we chose the strategy
presented in Box 7.5 (denoted as EM-CBL). It should be noted that such a
scheme, however intuitively reasonable, has no convergence guarantees; one
test even displayed oscillating behavior.

Box 7.5 (EM-CBL Algorithm)

Start by learning a Bayesian network with the available labeled data.

Repeat until two subsequent networks are identical:

– Use EM to process unlabeled data.

– Use independence tests with the “probabilistic labels” generated by
EM, to obtain a new structure.

Despite such difficulties, EM-CBL1 has been observed to actually improve
the performance obtained with EM-TAN in many problems (see Section 7.6).
This apparent victory must be taken carefully though: the algorithm takes
much more computational effort than EM-TAN, and its improvement over EM-
TAN is only marginal. Moreover, the algorithm relies on the computation of
mutual information with the “probabilistic labels” generated by EM; such a
method has been observed to lead to unreliable CI tests. Given the fact that
independence-based algorithms all depend critically on these tests, the lack of
robustness of such tests creates difficulties for EM-CBL1 in several classifica-
tion problems.

The EM-CBL2 was also tested (produced by running the algorithm de-
scribed in the previous paragraph, with CBL1 replaced by CBL2). The al-
gorithm is fast, but it is extremely sensitive to independence tests; in many sit-
uations it cannot find sensible orientation to edges and in some cases it makes
conflicting decisions. EM-CBL2 has been observed to be consistently worse
than EM-TAN, hence it was not explored further.
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To conclude, experience shows that the use of independence-based methods
in semi-supervised learning is not promising.

4.2 Likelihood and Bayesian Score-based Methods
Here we turn to a different family of algorithms, those based on scores. At

the heart of most score based methods is the likelihood of the training data. To
avoid overfitting the model to the data, the likelihood is offset by a complex-
ity penalty term, such as the minimum description length (MDL), Bayesian
information criterion (BIC), and others. A good comparison of the different
methods is found in [van Allen and Greiner, 2000]. Most existing methods
cannot, in their present form, handle missing data in general and unlabeled
data in particular. The structural EM (SEM) algorithm [Friedman, 1998] is
one attempt to learn structure with missing data. The algorithm attempts to
maximize the Bayesian score using an EM-like scheme in the space of struc-
tures and parameters; the method performs an always-increasing search in the
space of structures, but does not guarantee the attainment of even a local max-
imum. The algorithms using other scores could most likely be extended to
handle unlabeled data in much the same way as the SEM algorithm.

When learning the structure of a classifier, score based structure learning
approaches (such as BIC and MDL) have been strongly criticized. The prob-
lem is that with finite amounts of data, the a-posteriori probability of the
class variable can have a small effect on the score, that is dominated by the
marginal of the observables, therefore leading to poor classifiers [Friedman
et al., 1997; Greiner and Zhou, 2002]. Friedman et al. [Friedman et al., 1997]
showed that TAN surpasses score based methods for the fully labeled case,
when learning classifiers. The point is that with unlabeled data, score based
methods such as SEM are likely to go astray even more than what has been
reported in the supervised case; the marginal of the observables further domi-
nates the likelihood portion of the score as the ratio of unlabeled data increases.

Bayesian approaches to structure learning have also been proposed
in [Friedman and Koller, 2000; Madigan and York, 1995]. Madigan and
York [Madigan and York, 1995] construct a Markov Chain Monte Carlo
(MCMC) over the space of possible structures, with the stationary distribu-
tion being the posterior of the structures given the data. Metropolis sampling-
Hastings [Metropolis et al., 1953] is used to sample from the posterior distribu-
tion. Friedman and Koller [Friedman and Koller, 2000] use a two step method
in their sampling – first they sample from the distribution over the ordering of
the variables followed by exact computation of the desired posterior given the
ordering. As with likelihood scores, we can expect these two methods to face
difficulties when learning classifiers, since they focus on the joint distribution
given the data, and not on the classification error or the a-posteriori probability
of the class variable.
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5. Classification Driven Stochastic Structure Search
Both the score-based and independence-based methods try to find the cor-

rect structure of the Bayesian network, but fail to do so because there is not
enough data for either reliable independence tests or for a search that yields
a good classifier. Consider the following alternative. As we are interested in
finding a structure that performs well as a classifier, it would be natural to de-
sign algorithms that use classification error as the guide for structure learning.
Here, we can further leverage on the properties of semi-supervised learning:
we know that unlabeled data can indicate incorrect structure through degra-
dation of classification performance, and we also know that classification per-
formance improves with the correct structure. Thus, a structure with higher
classification accuracy over another indicates an improvement towards finding
the optimal classifier.

5.1 Stochastic Structure Search Algorithm
To learn structure using classification error, we must adopt a strategy of

searching through the space of all structures in an efficient manner while avoid-
ing local maxima. In this section, we propose a method that can effectively
search for better structures with an explicit focus on classification. We essen-
tially need to find a search strategy that can efficiently search through the space
of structures. As we have no simple closed-form expression that relates struc-
ture with classification error, it would be difficult to design a gradient descent
algorithm or a similar iterative method. Even if we did that, a gradient search
algorithm would be likely to find a local minimum because of the size of the
search space.

First we define a measure over the space of structures which we want to
maximize:

Definition 7.1 The inverse error measure for structure S′ is

inve(S′) =
1

pS′ (ĉ(X)�=�� C)∑
S

1
pS(ĉ(X)�=�� C)

, (7.13)

where the summation is over the space of possible structures and pS(ĉ(X) �=��
C) is the probability of error of the best classifier learned with structure S.

We use Metropolis-Hastings sampling [Metropolis et al., 1953] to generate
samples from the inverse error measure, without having to ever compute it for
all possible structures. For constructing the Metropolis-Hastings sampling, we
define a neighborhood of a structure as the set of directed acyclic graphs to
which we can transit in the next step. Transition is done using a predefined set
of possible changes to the structure; at each transition a change consists of a
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single edge addition, removal or reversal. We define the acceptance probability
of a candidate structure, SnewSS , to replace a previous structure, StSS as follows:

min

(
1,

(
inve(Snew)
inve(St)

))1/Tq(St|Snew)
q(Snew|St)

)
=min

(
1,

(
pt

error

pnew
error

)1/T
NtNN

NnewNN

)
, (7.14)

where q(S′|S) is the transition probability from S to S′ and NtNN and NnewNN
are the sizes of the neighborhoods of StSS and SnewSS respectively; this choice
corresponds to equal probability of transition to each member in the neighbor-
hood of a structure. This choice of neighborhood and transition probability
creates a Markov chain which is aperiodic and irreducible, thus satisfying the
Markov chain Monte Carlo (MCMC) conditions [Madigan and York, 1995].
The algorithm, which we name stochastic structure search (SSS), is presented
in Box 7.6.

Box 7.6 (Stochastic Structure Search Algorithm)

Fix the network structure to some initial structure, S0SS .

Estimate the parameters of the structure S0SS and compute the
probability of error p0

error.

Set t = 0.

Repeat, until a maximum number of iterations is reached (MaxIter):

– Sample a new structure SnewSS , from the neighborhood of StSS
uniformly, with probability 1/NtNN .

– Learn the parameters of the new structure using maximum
likelihood estimation. Compute the probability of error of the new
classifier, pnew

error.

– Accept SnewSS with probability given in Eq.(7.14).

– If SnewSS is accepted, set StSS +1 = SnewSS and pt+1
error = pnew

error and
change T according to the temperature decrease schedule.
Otherwise StSS +1 = StSS .

– t = t + 1.

return the structure SjS , such that j = argmin
0≤j≤MaxIter

(pj
error).
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We add T as a temperature factor in the acceptance probability. Roughly
speaking, T close to 1 would allow acceptance of more structures with higher
probability of error than previous structures. T close to 0 mostly allows ac-
ceptance of structures that improve probability of error. A fixed T amounts
to changing the distribution being sampled by the MCMC, while a decreasing
T is a simulated annealing run, aimed at finding the maximum of the inverse
error measures. The rate of decrease of the temperature determines the rate of
convergence. Asymptotically in the number of data, a logarithmic decrease of
T guarantees convergence to a global maximum with probability that tends to
one [Hajek, 1988].

The SSS algorithm, with a logarithmic cooling schedule T , can find a struc-
ture that is close to minimum probability of error. There are two caveats
though. First, the logarithmic cooling schedule is very slow. Second, we never
have access to the true probability of error for each structure – we estimate it
from a limited pool of training data. To avoid the problem of overfitting we
can take several approaches. Cross-validation can be performed by splitting
the labeled training set to smaller sets. However, this approach can signifi-
cantly slow down the search, and is suitable only if the labeled training set is
moderately large. A different approach is to change the the error measure using
known bounds on the empirical classification error, which account for model
complexity. We describe such an approach in the next section.

5.2 Adding VC Bound Factor to the Empirical Error
Measure

In practice, we do not have access to the exact probability of error, pS
error,

for any given structure. Instead, we use the empirical error over the training
data:

p̂S
error =

1
n

n∑
i=1

I(ĉi, ci), (7.15)

where I(ĉ, c) is 1 for ĉ = c and 0, otherwise. ĉi is the prediction of the class
given the learned classifier, ci is the true label, and n is the number of training
data. Using this approximation to the error, any search method might eventu-
ally overfit the training data, finding the global optimum of the empirical error,
p̂error, but resulting in a poor classifier for unseen data.

We use the multiplicative penalty term derived from structural risk mini-
mization to define a modified error term for use in Eqs. (7.13) and (7.14):

(p̂S
error)

mod =
p̂S

error

1 − c ·
√

hS(log 2n
hS

+1)−log(η/4)

n

, (7.16)
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Table 7.1. Classification results (in %) for labeled only tests, with 95% confidence intervals.

Data Set # Training # Test SSS NB TAN

Shuttle 43500 14500 99.93±0.03 99.79±0.04 99.86±0.03
Satimage 4435 2000 87.70±0.73 81.80±0.86 86.15±0.77

Adult 30162 15060 85.94±0.28 83.85±0.29 85.08±0.29
Chess 2130 1066 96.53±0.59 88.38±0.99 91.93±0.85

where hS is the Vapnik-Chervonenkis (VC) dimension of the classifier with
structure S, n is the number of training records, η and c are between 0 and 1.

To approximate the VC dimension, we use: hS ∝ NSN , where NSN is the
number of (free) parameters in the Markov blanket of the class variable in the
network, assuming that all variables are discrete. We point the reader to [Roth,
1999], in which it was shown that the VC dimension of a Naive Bayes classifier
is linearly proportional to the number of parameters. It is possible to extend this
result to networks where the features are all descendants of the class variable.
For more general networks, features that are not in the Markov blanket of the
class variable cannot affect its value in classification (assuming there are no
missing values for any feature), justifying the above approximation. In our
initial experiments, we found that the multiplicative penalty outperformed the
holdout method and the MDL and BIC complexity measures.

6. Experiments
The experiments test the SSS algorithm and compare it to the other ap-

proaches. First we investigate the performance using only labeled data with
datasets from the UCI machine learning repository [Blake and Merz, 1998],
validating that it is performing correct in general. We then removed the labels
of most of the data randomly and learn with both labeled and unlabeled data.
All of the results we present were obtained on independent test sets, which
were not used in during the learning phase. For the SSS algorithm we used
either the Naive-Bayes or TAN structure as the starting point network and use
300-1000 iterations of the SSS algorithm.

6.1 Results with Labeled Data
Table 7.1 shows the classification results with fully labeled data for a num-

ber of datasets. For each dataset, we compare the classifier obtained with our
search method to Naive Bayes and TAN classifiers. Results of other classifiers
on most of these datasets have been reported in [Friedman et al., 1997], and
are comparable to the performance of the SSS algorithm. We see that for all
the datasets, the structure search algorithm outperformed NB and TAN. The
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Table 7.2. The datasets used in the experiments with labeled and unlabeled data.

Dataset Train Test
# labeled # unlabeled

TAN artificial 300 30000 50000
Satimage 600 3835 2000
Shuttle 100 43400 14500
Adult 6000 24163 15060
Chess 150 1980 1060

most dramatic increase occurred for the Chess dataset, where the performance
improved to over 96% accuracy.

6.2 Results with Labeled and Unlabeled Data
To evaluate structure learning methods with labeled and unlabeled data, we

started with an empirical study involving simulated data. We artificially gen-
erated data to investigate:

1 whether the SSS algorithm finds a structure that is close to the structure that
generated the data, and

2 whether the algorithm uses unlabeled data to improve the classification per-
formance.

A typical result is as follows. We generated data from a TAN structure
with 10 features. The dataset consisted of 300 labeled and 30000 unlabeled
records (first row of Table 7.2). We first estimated the Bayes error rate by
learning with the correct structure and with a very large fully labeled dataset.
We obtained a classification accuracy of 92.49%. We learned one Naive Bayes
classifier only with the labeled records, and another classifier with both labeled
and unlabeled records; likewise, we learned a TAN classifier only with the
labeled records, and another one with both labeled and unlabeled records, using
the EM-TAN algorithm; and finally, we learned a Bayesian network classifier
with our SSS algorithm using both labeled and unlabeled records. The results
are presented in the first row of Table 7.3. With the correct structure, adding
unlabeled data improves performance significantly (columns TAN-L and EM-
TAN). Note that adding unlabeled data degraded the performance from 16%
error to 40% error when we learned the Naive Bayes classifier. The structure
search algorithm comes close to the performance of the classifier learned with
the correct structure. Figure 7.3(a) shows the changes in the test and train error
during the search process. The graph shows the first 600 moves of the search,
initialized with the Naive Bayes structure. The error usually decreases as new
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Table 7.3. Classification results (in %) for Naive Bayes classifier learned with labeled data
only (NB-L), Naive Bayes classifier learned with labeled and unlabeled data (EM-NB), TAN
classifier learned with labeled data only (TAN-L), TAN classifier learned with labeled and un-
labeled data (EM-TAN), the EM-CBL1 algorithm, and stochastic structure search with labeled
and unlabeled data (SSS).

Dataset NB-L EM-NB TAN-L EM-TAN EM-CBL1 SSS

TAN artificial 83.4±0.2 59.2±0.2 90.9±0.1 91.9±0.1 N/A 91.1±0.1
Satimage 81.7±0.9 77.5±0.9 83.5±0.8 81.0±0.9 83.5±0.8 83.4±0.8
Shuttle 82.4±0.3 76.1±0.4 81.2±0.3 90.5±0.2 91.8±0.2 96.3±0.2
Adult 83.9±0.3 73.1±0.4 84.7±0.3 80.0±0.3 82.7±0.3 85.0±0.3
Chess 79.8±1.2 62.1±1.5 87.0±1.0 71.2±1.4 81.0±1.2 76.0±1.3

structures are accepted; occasionally we see an increase in the error allowed
by Metropolis-Hastings sampling.

Next, we performed experiments with some of the UCI datasets, using rel-
atively small labeled sets and large unlabeled sets (Table 7.2). The results in
Table 7.3 suggest that structure learning holds the most promise in utilizing the
unlabeled data. There is no clear ’winner’ approach, although SSS yields bet-
ter results in most cases. We see performance degradation with NB for every
dataset. EM-TAN can sometimes improve performance over TAN with just
labeled data (Shuttle). With the Chess dataset, discarding the unlabeled data
and using only TAN seems the best approach.

Illustrating the iterations of the SSS algorithm, Figure 7.3(b) shows the
changes in error for the shuttle datasets. The Bayesian network structure
learned with the SSS algorithm for the Shuttle database is shown in Figure 7.4.

As discussed in Section 7.4.2, likelihood based score methods are not
promising when learning with labeled and unlabeled data. We illustrate the
possible shortcomings of these methods with experiments on the databases dis-
cussed above. For all databases we learned the structure and parameters using
the K2 [Cooper and Herskovits, 1992] and MCMC [Madigan and York, 1995]
(driven by the Bayesian score) algorithms with the fully labeled datasets4. Af-
ter this step, we learned the parameters of the same structure with the mixed
labeled and unlabeled training sets as described in Table 7.3. To reduce the
possibility of convergence of EM to a local maxima, the parameters learned
with the fully labeled learning are used as the starting point for the EM algo-
rithm. We intentionally assist the algorithms to make the point of their short-
comings. Table 7.4 shows the classification results for both cases (fully labeled

4Learning the structure was performed with the Bayesian network toolbox for Matlab, written by Dr. Kevin
Murphy.
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Figure 7.3. Train and test error during the structure search for the artificial data (a) and shuttle
data (b) for the labeled and unlabeled data experiments.
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Figure 7.4. Bayesian network structure learned for the Shuttle database.

Table 7.4. Classification results (in %) for the K2 and MCMC structure learning. xx-L means
using all the labeled data (Table 7.1). xx-LUL means using the labeled and unlabeled data
(Table 7.2).

Data Set K2-L K2-LUL MCMC-L MCMC-LUL

Shuttle 96.4±0.2 86.8±0.3 N/A N/A
Satimage 82.0±0.9 77.3±0.9 83.3±0.8 64.4±1.1

Adult 84.2±0.3 84.1±0.3 82.6±0.3 77.6±0.3
Chess 94.3±0.7 88.6±1.0 95.3±0.7 88.7±1.0

and partially labeled). The classification results with the fully labeled sets are
comparable to the results in Table 7.1. With labeled and unlabeled data, we
see that the for most cases, the full potential of unlabeled data was not utilized,
even with the extensive ’help’ to the algorithms. In addition, with the exception
of the Chess database, other results are inferior to those shown in Table 7.3.

7. Should Unlabeled Data Be Weighed Differently?
We see that in all the experiments, unlabeled data degraded the performance

for the Naive Bayes structure. An interesting strategy, suggested by Nigam et
al. [Nigam et al., 2000] was to change the weight of the unlabeled data (reduc-
ing their effect on the likelihood). The basic idea in Nigam et al’s estimators is
to produce a modified log-likelihood that is of the form:

λ′Ll(θ) + (1 − λ′)Lu(θ), (7.17)
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for a sequence of λ′, maximize these modified log-likelihood functions to ob-
tain θ̂λ′ , and choose the best one with respect to cross-validation or testing.
The estimator has the same form of Expression (4.9). In fact, asymptotically
the estimator is simply modifying the ratio of labeled to unlabeled samples for
any fixed λ′. Note that this estimator can only make sense under the assump-
tion that the model is incorrect. Otherwise, both terms in Expression (7.17)
lead to unbiased estimators of θ. There is then no reason to impose different
weights on the data, and much less reason to search for the best weight, when
the differences are solely in the rate of reduction of variance. Presumably, there
are a few labeled samples available and a large number of unlabeled samples;
why should we increase the importance of the labeled samples, giving them
more weight to a term that will contribute more heavily to the variance?

Nigam et al’s estimator does seem to have a more solid motivation in the
presence of modeling errors. Consider the following scenario, which curiously
is not even mentioned by Nigam et al [Nigam et al., 2000]. In Example 4.6
from Chapter 4, if the boundary from labeled data and the boundary from un-
labeled data are in different sides of the best linear boundary, then obviously
we can find the best linear boundary by changing λ′. We can improve on both
supervised and unsupervised learning in such a situation! Some authors have
argued that labeled data should be given more weight on somewhat subjective
grounds [Corduneanu and Jaakkola, 2002], but this example shows that there
are no guarantees concerning the supposedly superior effect of labeled data.

In any case, one cannot expect to find the best possible boundary just by
changing λ′ in Expression (7.17). Consider the following simple tests with
Nigam et al’s estimators, taking both artificial and real datasets.

We first generated data from a randomly generated TAN structure with 10
features, where the Bayes error is approximately 7.51%. We changed the
proportion of labeled to unlabeled samples, learning various classifiers with
the EM algorithm, obtaining the classification errors depicted in Figure 7.5.

Consider then the Shuttle dataset from the UCI repository [Blake and Merz,
1998]. Using only 100 labeled samples, a Naive Bayes classifier produced
classification error of 18%. Now, with 100 labeled samples and 43400
unlabeled samples, a Naive Bayes learned with the EM algorithm produced
classification error of 30%. We then considered various combinations of
these labeled and unlabeled datasets. Results are again shown in Figure 7.5.

These tests indicate that Nigam et al’s estimators are not uniformly useful in
practice.

8. Active Learning
All the methods above considered a ‘passive’ use of unlabeled data. A dif-

ferent approach is known as active learning, in which an oracle is queried
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Figure 7.5. The effect of varying the weight of the unlabeled data on the error for the Artificial
data problem (a) and Shuttle database (b). The number of labeled and unlabeled records is
specified in Table 7.3.

for the label of some of the unlabeled data. Such an approach increases the
size of the labeled data set, reduces the classifier’s variance, and thus reduces
the classification error. There are different ways to choose which unlabeled
data to query. The straightforward approach is to choose a sample randomly.
This approach ensures that the data distribution p(C,X) is unchanged, a de-
sirable property when estimating generative classifiers. However, the random
sample approach typically requires many more samples to achieve the same
performance as methods that choose to label data close to the decision bound-
ary. We note that, for generative classifiers, the latter approach changes the
data distribution therefore leading to estimation bias. Nevertheless, McCallum
and Nigam [McCallum and Nigam, 1998] used active learning with generative
models with success. They proposed to first actively query some of the labeled
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data followed by estimation of the model’s parameters with the remainder of
the unlabeled data.

We are interested in seeing the effect of active learning for learning a gener-
ative Bayesian network. Figure 7.6 brings an interesting example. The figure
shows the classification error as a function of the number of (actively queried)
labeled data when estimating an arbitrary generative Bayesian network with a
Bayes error rate of approximately 6.3%. The classifier includes nine binary
observables, with many arcs between the observable nodes, and a binary class
variable. We use the simple random active learning approach (labeling of ran-
dom samples) and the approach of choosing samples with high information
gain (i.e., around the decision boundary). We use an initial pool of 20 labeled
samples and sample additional samples from a pool of 10000 unlabeled sam-
ples. We also test McCallum and Nigam’s approach of using the remainder of
the unlabeled data after a portion are labeled actively. Figure 7.6(a) shows this
approach when the correct structure is specified. We see that for the methods
using only labeled data, when we increase the number of labeled data the per-
formance improves at more or less the same rate. We also see that the addition
of labeled samples does not make any difference when adding the unlabeled
data (Random+EM, Info Gain+EM)— the unlabeled data are already sufficient
to achieve an error rate close to the Bayes error. Figure 7.6(b) shows the perfor-
mance when an incorrect model (TAN) is assumed. Here we see that queries
of samples close to the decision boundary allows a faster improvement in per-
formance compared to random sampling — in fact, the bias introduced by the
boundary sampling allows the classifier to achieve better overall performance
even after 1000 samples. When adding the unlabeled data, performance degra-
dation occurs and as more labeled data are added (changing the ratio between
labeled and unlabeled data), the classification performance does improve, but,
at 1000 labeled samples, is still far from that using no unlabeled data.

The above results suggest the following statements. With correctly specified
generative models and a large pool of unlabeled data, “passive” use of the unla-
beled data is typically sufficient to achieve good performance. Active learning
can help reduce the chances of numerical errors (improve EM starting point,
for example), and help in the estimation of classification error. With incorrectly
specified generative models, active learning is very profitable in quickly reduc-
ing error, while adding the remainder of unlabeled data might not be desirable.

9. Concluding Remarks
The discussion in this chapter illustrated the importance of structure learning

when using unlabeled data for Bayesian network classifiers. We discussed dif-
ferent strategies that can be used, such as model switching and structure learn-
ing. We introduced a classification driven structure search algorithm based on
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Figure 7.6. Learning Generative models with active learning. (a) Assuming correct structure,
(b) Assuming incorrect structure (TAN).



Concluding Remarks 155

Metropolis-Hastings sampling, and showed that it performs well both on fully
labeled datasets and on labeled and unlabeled training sets.

The idea of structure search is particularly promising when unlabeled data
are present. It seems that simple heuristic methods, such as the solution pro-
posed by Nigam et al [Nigam et al., 2000] of weighing down the unlabeled
data, are not the best strategy for unlabeled data. We suggest that structure
search, and in particular stochastic structure search, holds the most promise
for handling large amount of unlabeled data and relatively scarce labeled data
for classification. We also believe that the success of structure search methods
for classification increases significantly the breadth of applications of Bayesian
networks.

To conclude, this chapter presented and compared several different ap-
proaches for learning Bayesian network classifiers that attempt to achieve im-
provement of classification performance when learning with unlabeled data.
While none of these methods is universally superior, each method is useful
under different circumstances:

Learning TANs using EM-TAN is a fast and useful method. Although the
expressive power of TAN structures is still limited, it usually outperforms
the Naive Bayes classifier in semi-supervised learning.

Structure learning in general, and classification driven structure search in
particular is usually the best approach to learn with unlabeled data. How-
ever, this approach comes at a computational cost and would work only
with reasonably large datasets.

It is difficult to learn structure using independence tests and unlabeled data–
the reliability of the independence tests is not sufficient.

Active learning is a promising approach and should be used whenever
model uncertainty is prevalent. An interesting idea is to try and use ac-
tive learning to assist in learning the model, querying data that will assist
in determining whether a model change is called for. Pursuit of this idea in
the subject of future research.

In a nutshell, when faced with the option of learning with labeled and unla-
beled data, our discussion suggests following the following path.

Start with Naive Bayes and TAN classifiers, learn with only labeled data
and test whether the model is correct by learning with the unlabeled data,
using EM and EM-TAN.

If the result is not satisfactory, then SSS can be used to attempt to further
improve performance with enough computational resources.
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If none of the methods using the unlabeled data improve performance over
the supervised TAN (or Naive Bayes), active learning can be used, as long
as there are resources to label some samples.

Chapters 10 and 11 present two different human computer interaction ap-
plications (facial expression recognition and face detection) that use the algo-
rithms suggested in this chapter.



Chapter 8

APPLICATION:
OFFICE ACTIVITY RECOGNITION

Researchers and application developers have long been interested in the
promise of performing automatic and semi-automatic recognition of human be-
havior from observations. Successful recognition of human behavior is critical
in a number of compelling applications, including automated visual surveil-
lance and multimodal human-computer interaction (HCI) – user interfaces that
consider multiple streams of information about a user’s behavior and the over-
all context of a situation. Although there has certainly been progress on multi-
ple fronts, many challenges remain for developing machinery that can provide
rich, human-centric notions of context. Endowing computers with richer no-
tions of context can enhance the communication between humans and comput-
ers and catalyze the development of new kinds of computational services and
experiences.

In this chapter, we develop probabilistic machinery that can provide real-
time interpretations of human activity in and around an office. In brief, we
make use of special architecture which we call Layered HMM and our results
show that this new proposed model is highly effective in modeling the human
activities. We will start by describing the context-sensitive systems.

1. Context-Sensitive Systems

Location and identity have been the most common properties considered
as comprising a user’s situation in “context-aware” HCI systems. Context can
include other critical aspects of a user’s situation, such as the user’s current and
past activities and intentions. Recent work on the use of probabilistic models
for reasoning about a user’s location, intentions, and focus of attention have
highlighted opportunities for building new kinds of applications and services
[Horvitz et al., 1999].
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Most of the previous work on leveraging perceptual information to recog-
nize human activities has centered on the identification of a specific type of
activity in a particular scenario. Many of these techniques are targeted at rec-
ognizing single, simple events, e.g., “waving the hand” or “sitting on a chair”.
Less effort has been applied to research on methods for identifying more com-
plex patterns of human behavior, extending over longer periods of time.

In particular, we would highlight here a number of approaches that employ
graphical models for the recognition of human activities. A significant portion
of work in this arena has harnessed Hidden Markov Models (HMMs) [Rabiner,
1989]. Starner and Pentland in [Starner et al., 1998] use an HMM for recogniz-
ing hand movements used to relay symbols in American Sign Language. The
different signs are recognized by computing the probabilities that models for
different symbols would have produced the observed visual sequence. More
complex models, such as Parameterized-HMM (PHMM) [Wilson and Bobick,
1998], Entropic-HMM [Brand and Kettnaker, 2000], Variable-length HMM
(VHMM) [Galata et al., 2001] and Coupled-HMM (CHMM) [Brand et al.,
1997], have been used to recognize more complex activities such as the interac-
tion between two people. Bobick and Ivanov [Ivanov and Bobick, 2000], pro-
pose the use of a stochastic context-free grammar to compute the probability
of a temporally consistent sequence of primitive actions recognized by HMMs.
Clarkson and Pentland [Clarkson and Pentland, 1999] model events and scenes
from audiovisual information. They have developed a wearable computer sys-
tem that automatically clusters audio-visual information into events and scenes
in a hierarchical manner. Their goal is to determine where the user is at each
instant of time (i.e. at home, the office, at the bank, etc). Brand and Ket-
tnaker in [Brand and Kettnaker, 2000] propose an entropic-HMM approach
to organize the observed video activities (office activity and outdoor traffic)
into meaningful states. They illustrate their models in video monitoring of
office activity and outdoor traffic. In [Hongeng et al., 2000], a probabilistic
finite-state automaton (a variation of structured HMMs) is used for recogniz-
ing different scenarios, such as monitoring pedestrians or cars on a freeway.
Although HMMs appear to be robust to changes in the temporal segmentation
of observations, they tend to suffer from a lack of structure, an excess of pa-
rameters, and an associated overfitting of data when they are applied to reason
about long and complex temporal sequences with limited training data. Finally,
in recent years, more complex Bayesian networks have also been adopted for
the modeling and recognition of human activities [Binder et al., 1997; Mad-
abhushi and Aggarwal, 1999; Hoey, 2001; Horvitz et al., 1998; Fernyhough
et al., 1998; Buxton and Gong, 1995; Intille and Bobick, 1999; Horvitz et al.,
1999; Forbes et al., 1995].

To date, however, there has been little research on real-time, multimodal sys-
tems for human-computer interaction that use probabilistic methods to model
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typical human activities in a hierarchical manner. The methods and working
system described in this chapter focus on this representation. We show how
with our approach one can learn and recognize on-the-fly the common, distinct
situations in office settings.

2. Towards Tractable and Robust Context Sensing
A key challenge in inferring human-centric notions of context from multi-

ple sensors is the fusion of low-level streams of raw sensor data –for example,
acoustic and visual cues– into higher-level assessments of activity. Low-level
sensors present a system with relatively high-frequency information. The task
of moving from low-level signals that are marked by relatively high-frequency
variations to more abstract hypotheses about activity brings into focus a con-
sideration of a spectrum of approaches. Potentially valuable methods include
template matching, context-free grammars, and various statistical methods. We
have developed a probabilistic representation based on a tiered formulation of
dynamic graphical models that we refer to as layered Hidden Markov Models
(LHMMs).

To be concrete, let us consider a set of real-world sensors. In particular, we
have explored the challenge of fusing information from the following sources:

1. Binaural microphones: Two mini-microphones (20 − 16000 Hz, SNR 58
dB) capture ambient audio information. The audio signal is sampled at
44100 KHz. The microphones are used for sound classification and local-
ization.

2. USB camera: A video signal is obtained via a standard USB camera (In-
tel), sampled at 30 frames/s. The video input is used to determine the num-
ber of persons present in the scene;

3. Keyboard and mouse: We keep a history of keyboard and mouse activities
during the past 5 seconds.

In our initial work, we attempted to build single-layer (non-hierarchical)
models to reason about overall office situation, including determining the pres-
ence of a phone conversation, a face to face conversation, a ongoing pre-

sentation, a distant conversation, nobody in the office and a user is present

and engaged in some other activity. Some of these activities have been pro-
posed in the past as indicators of a person’s availability [Johnson and Green-
berg, 1999].

We explored the use of Hidden Markov Models (HMMs). Hidden Markov
models (HMMs) are a popular probabilistic framework for modeling processes
that have structure in time. An HMM is essentially a quantization of a system’s
configuration space into a small number of discrete states, together with prob-
abilities for the transitions between states. A single finite discrete variable



160 Application:Office Activity Recognition

indexes the current state of the system. Any information about the history of
the process needed for future inferences must be reflected in the current value
of this state variable. There are efficient algorithms for state and parameter
estimation in HMMs. Graphically HMMs are often depicted “rolled-out in
time”, such as in Figure 8.1 (a).

We found that a single-layer HMM approach generated a large parameter
space, requiring substantial amounts of training data for a particular office or
user, and with typical classification accuracies not high enough for a real ap-
plication. Finally and more importantly, when the system was moved to a new
office, copious retraining was typically necessary to adapt the model to the
specifics of the signals and/or user in the new setting.

Therefore, we sought a representation that would be robust to typical vari-
ations within office environments, such as changes of lighting and acoustics.
We wanted a representation that would allow the models to perform well when
transferred to new office spaces with minimal tuning through retraining. We
also pursued a representation that would map naturally onto the problem space.
Psychologists have found that many human behaviors are hierarchically struc-
tured [Zacks and Tversky, 2001]. We desired a representation that could cap-
ture such hierarchical properties in an elegant manner.

We converged on the use of a multilevel representation that allows for ex-
planations at multiple temporal granularities, by capturing different levels of
temporal detail. For example, in the domain of office awareness, one level
of description is the analysis and classification of the raw sensor signals (e.g.,
audio, keyboard, mouse, video, etc.). This level corresponds to a fine time
granularity of the order of milliseconds. Another level of description is the
detection of the user’s presence. In this case, the time granularity is of the or-
der of a second. At another level, one could describe what the user has done
in the last N minutes. Finally, one could provide an explanation of the user’s
activities during the day.

3. Layered Hidden Markov Models (LHMMs)

We have developed a layered HMM (LHMM) representation in an attempt
to decompose the parameter space in a way that could enhance the robustness
of the system by reducing training and tuning requirements. In LHMMs, each
layer of the architecture is connected to the next layer via its inferential re-
sults. The representation segments the problem into distinct layers that operate
at different temporal granularities – allowing for temporal abstractions from
point-wise observations at particular times into explanations over varying tem-
poral intervals. LHMMs can be regarded as a cascade of HMMs. The structure
of a three-layer LHMM is displayed in Figure 8.1 (b).



Layered Hidden Markov Models (LHMMs) 161

3.1 Approaches
Formally, given a set of TLT observations, OL = {OL

1 , OL
2 , ..., OL

TLT }, at level
L, the HMMs at this level, can be thought of as a multiclass classifier mapping
these observations with time granularity TLT to one of KLK classes. If OL

t ∈
X TLT , then the bank of HMMs can be represented as f : X TLT → YL where
YL = {0, 1, ..., KLK − 1}. The HMMs at the next level (L + 1) take as inputs
the outputs of the HMMs at level L and learn a new classification function
with time granularity TLT +1, f : X TLT +1 → YL+1, where YL

tYY ∈ X TLT +1 . In this
framework, each HMM is learned independently of the others. The availability
of labeled data during the training phase allows us to do efficient supervised
learning. By itself, each HMM is trained using the Baum-Welch algorithm
[Rabiner, 1989].

A layered HMM structure provides valuable properties. Layered formula-
tion makes it feasible to decouple different levels of analysis for training and
inference. As we review in Section 8.4.3, each level of the hierarchy is trained
independently, with different feature vectors and time granularities. In con-
sequence, the lowest, signal-analysis layer that is most sensitive to variations
in the environment could be retrained, while leaving the higher-level layers
unchanged.

We have implemented two approaches to do inference with LHMMs. In
the first approach, which we refer to as maxbelief, models with the highestff
likelihood are selected, and this information is made available as an input to
the HMMs at the next level. In the distributional approach, we execute the
low-level models and pass a probability distribution over the models to the
higher-level HMMs.

As an example, let us suppose that we train K HMMs at level L of the
hierarchy, M(k)L, with k = 1, ...,K. Let

L(k, t)L = log(P (O(1 : t)|M(k)L)) = log
∑

i

αt(i;M(k)L)

be the log-likelihood of model M(k)L given all the observations up to time t;
and let αt(i; M(k)L) be the alpha variable at time t for model M(k)L.

At that level, we classify the observations by declaring

C(t)L = arg max
k

L(k)L
t ,

with k = 0, ...,K − 1. The next level of the hierarchy (L + 1) could have two
kinds of observations of τ temporal length:

1 either, C(1 : τ)L, i.e. the hard classification results from the previous
level for each time step and therefore a vector of τ discrete symbols in
{0, ..., K − 1}. This is the maxbelief approach, or
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2 {L(0 : K − 1)L
t=1, ...,L(0 : K − 1)L

t=τ}, i.e. the log-likelihoods for each
of the models and time instants, –and therefore a vector of K reals for each
time step. This corresponds to the distributional approach.

In our experience, we did n0t observe any better performance by using the
latter approach. The results reported in section 8.5 correspond to the maxbelief
approach, which is simpler.

3.2 Decomposition per Temporal Granularity
Figure 8.1 (b) highlights how we decompose the problem into layers with

increasing time granularity. For example, at layer L we have a sliding time
window of TL samples. The HMMs at this level analyze the data contained in
such time window, compute their likelihood and generate one observation for
layer L+1 for each processed time window. That observation is the inferential
output of the HMMs in level L. The sliding factor along with the window
length vary with the granularity that is represented at each level. At the lowest
level of the hierarchy, the samples of the time window are the features extracted
from the raw sensor data (see Section 8.4.1). At any other level of the hierarchy,
the samples are the inferential outputs of the previous level. The higher the
level, the larger the time scale – and therefore the higher the level of abstraction
– because gathering observations at a higher level requires the outputs of lower
layers. In a sense, each layer performs time compression before passing data
upward.

Automatic estimation of TL from data is a challenging problem both for
standard HMMs and LHMMs. In the models and experiments described in
this chapter, we determined the time granularities at each level based on our
intuitions and knowledge about the different classes being modeled at each
level. We used cross-validation to select the optimal values from the original
set of proposed ones.

Focusing more specifically on our target application of office awareness, we
employ a two layer HMM architecture. The raw sensor signals are processed
with time windows of duration less than 100 milliseconds. Next, the lowest
layer of HMMs classify the audio and video data with a time granularity of less
than 1 second. The second layer of HMMs represents typical office activities,
associated with a time granularity of about 5 − 10 seconds. The activities
modeled in this setting are: (1) Phone conversation; (2) Presentation; (3) Face-

to-face conversation; (4) User present, engaged in some other activity; (5)

Distant conversation (outside the field of view); (6) Nobody present.
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4. Implementation of SEER
We explored the use of LHMMs in a system named SEER, which employs a

two-layer HMM architecture.

4.1 Feature Extraction and Selection in SEER
The raw sensor signals are preprocessed to obtain feature vectors (i.e. obser-

vations) for the first layer of HMMs. With respect to the audio analysis, Linear
Predictive Coding coefficients [Rabiner and Huang, 1993] are computed. Fea-
ture selection is applied to these coefficients via principal component analysis.
The number of features is selected such that at least 95% of the variability in
the data is maintained, which is typically achieved with no more than 7 fea-
tures. We also extract other higher-level features from the audio signal such as
its energy, the mean, and variance of the fundamental frequency over a time
window, and the zero crossing rate [Rabiner and Huang, 1993], given by

Zeros(m) =
1
N

m∑
n=m−N+1

|sign(s(n)) − sign(s(n − 1))|
2

· w(m − n),

where m is the frame number, N is the frame length, w is a window function,
s(n) is the digitized audio signal at an index indicator n, and

sign(s(n)) =

{
1 if s(n) ≥ 0
−1 if s(n) < 0.

The source of the sound is localized using the Time Delay of Arrival
(TDOA) method. In TDOA [Brandstein and Silverman, 1997], one mea-
sures the time delays between the signals coming from each sensor. Typi-
cally, TDOA-based approaches have two steps: the time delay estimation and
the sound source localization. Let s(n) be the source signal and let xi(n)
be the i-th sensor received signal. If we assume no reverberation, we have
xi(n) = ais(n− ti)+ bi(n). To model reverberation, one can add a non-linear
reverberation function: xi(n) = gi ∗ s(n − ti) + bi(n), where ai is the attenu-
ation factor, bi is additive noise and gi is the response between the source and
the sensor.

In SEER we implemented multiple approaches for estimating the time delay
of arrival between the left and right audio signals. We obtained the best perfor-
mance by estimating the peak of the time cross-correlation function between
the left and right audio signals over a finite time window [N1NN , N2NN ], i.e.:

rlr(d) =
n=N2NN∑
n=N1

l(n)r(n − d).
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This is the method used in the experiments described in Section 8.5.
With respect to the video, four features are extracted from the video signal:

the density of skin color in the image (obtained by discriminating between
skin and non-skin models, consisting of histograms in HSV color space), the
density of motion in the image (obtained by image differences), the density
of foreground pixels in the image (obtained by background subtraction, after
having learned the background), and the density of face pixels in the image
(obtained by applying a real-time face detector to the image [Li et al., 2001]).

Finally, a history of the last 5 seconds of mouse and keyboard activities is
logged.

4.2 Architecture of SEER
We employ a two-level cascade of HMMs. The lowest level captures video,

audio, and keyboard and mouse activity, and computes the feature vectors as-
sociated to each of these signals, as previously described.

The middle layer includes two banks of distinct HMMs for classifying the
audio and video feature vectors. The structure for each of these HMMs is de-
termined by means of cross-validation on a validation set of real-time data. On
the audio side, we train one HMM for each of the following office sounds: hu-
man speech, music, silence, ambient noise, a phone ringing, and the sounds of
keyboard typing. We will denote this kind of HMMs “discriminative HMMs”.
When classifying the sounds, all of the models are executed in parallel. At
each instant, the model with the highest likelihood is selected and the sound
is classified correspondingly. The source of the sound is also localized using
a technique based on the Time Delay of Arrival (TDOA), as explained before.
The video signals are classified using another set of discriminative HMMs that
implement a person detector. At this level, the system detects whether one per-
son is present in the room (semi-static), one active person is present, multiple
people are present, or there is nobody in the office.

The inferential results1 from this layer (i.e., the outputs of the audio and
video classifiers), the derivative of the sound localization component, and the
history of keyboard and mouse activities constitute a feature vector that is
passed to the next (third) and highest layer of analysis. This third layer handles
concepts that have longer temporal extent. Such concepts include the user’s
typical activities in or near an office. The models at this level are also discrim-
inative HMMs.

1See section 8.3 for a detailed description of how we use these inferential results.
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4.3 Learning in SEER
Since in SEER, at each layer of the hierarchy, each classifier is a HMM,

learning is reduced to the problem of learning individual HMMs. This problem
is typically solved by making use of the forward-backward or Baum-Welch
algorithm. This algorithm provides expressions for the forward, αt(i), and
backward, βtββ (i), variables, as

αt+1(j) =

[
N∑

i=1

αt(i)PjPP |i

]
pj(ot) (8.1)

and for the βtββ (i) variable,

βtββ (i) =

⎡⎣⎡ N∑
j=1

βtββ +1(j)PiPP |jpj(ot+1)

⎤⎦⎤ (8.2)

where N is the number of hidden states, P is the transition probability matrix
with PiPP |j being the probability of state i given state j, and pi(ot) is the prob-
ability for observation at time t given that the model is in state i. From the α
and β variables one can obtain the model parameters, i.e. the observation and
transition probabilities. These can also be used to obtain the log-likelihood of
a sequence of observations which is given by

L = log P (O1, ..., OT ) = log
N∑

i=1

αt(i)βtββ (i).

Some more details on this and few extensions of this are described in Chap-
ter 9.

4.4 Classification in SEER
The final goal of the system is to decompose in real-time the temporal se-

quence obtained from the sensors into concepts at different levels of abstraction
or temporal granularity. During the training phase, multiple classifiers at dif-
ferent levels have been learned. Since the classifiers at each level are a set of
HMMs, we adopt standard HMM inferencing techniques. We use the forward-
backward algorithm to compute the likelihood of a sequence given a particular
model at a particular level.

5. Experiments
As we have previously mentioned, layered representations are supported by

psychological findings that both the production and interpretation of human
activities is hierarchical in nature. We also believed that layered representa-
tions could provide a means for decomposing the overall context-assessment
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challenge into a set of simpler subproblems that could make learning and infer-
ence more tractable and robust to variation in different instances of the target
domain.

We have tested SEER in multiple offices, with different users, and respective
environments for several weeks. In our tests, we have found that the high-level
layers of SEER are relatively robust to changes in the environment.

In all the cases, when we moved SEER from one office to another, we ob-
tained nearly perfect performance without the need for retraining the higher
levels of the hierarchy. Only some of the lowest-level models required re-
training to tune their parameters to the new conditions (such as different am-
bient noise, background image, and illumination) . The fundamental decom-
posability of the learning and inference of LHMMs makes it possible to reuse
prior training of the higher-level models, allowing for the selective retraining
of layers that are less robust to the variations present in different instances of
similar environments.

In a more quantitative study, we compared the performance of our model
with that of single, standard HMMs. The feature vector in the latter case
results from the concatenation of the audio, video, and keyboard/mouse ac-
tivities features in one long feature vector. We refer to these HMMs as the
Cartesian Product (CP) HMMs. For example, in SEER we want to classify
6 different high-level office activities. Let us assume that we use eight-state
CP HMMs with single Gaussian observations of dimensionality 16 to model
such behaviors. We would need to estimate 8 ∗ (16 + 16 + 120) = 1216
parameters for each behavior. An equivalent LHMM with 2 levels would typ-
ically have, at the lowest level, two banks of, say, five-state HMMs (six audio
HMMs – assuming we have six audio classes, and four video HMMs – as-
suming four video classes, with dimensionalities 10 and 3 respectively), and at
the highest level (the behavior level), a set of 6 four-state HMMs2 of dimen-
sionality 12, if we use the distributional approach: six dimensions for the six
audio HMMs, four for the four video HMMs, one for the sound localization
component, and another for the keyboard/mouse activities. This amounts to
5 ∗ 5 ∗ (10 + 10 + 45) + 4 ∗ 5 ∗ (3 + 3 + 3) = 1805 for all the models at the
first layer and 4 ∗ (12 + 12 + 66) = 360 for each behavior at the second layer.
Therefore, the number of parameters to estimate is lower for LHMMs than for
the CP HMMs. Moreover, the inputs at each level have already been filtered
by the previous level and are more stable than the feature vectors directly ex-
tracted from the raw sensor data. In summary, encoding prior knowledge about
the problem in the structure of the models decomposes the problem in simpler
subproblems and reduces the dimensionality of the overall model. Therefore,

2In our experiments the best models obtained using cross-validation had no more than 4 states in LHMMs
but needed at least 8 states in the Cartesian Product HMMs.
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for the same amount of training data, it is expected for LHMMs to have su-
perior performance than HMMs. Our experimental results corroborate such
expectation. We would like to highlight at this point that it is not considerably
more difficult to determine the structure of LHMMs when compared to HMMs.
Both for HMMs and LHMMs we estimated the structure of each of the mod-
els – and at each of the levels for LHMMs – using cross-validation. The only
additional complexity when designing an LHMM architecture is the number
of levels and their time granularity. In our experience, however, we found that
our intuition and knowledge about the problem were enough to estimate how
many layers to use and the time span of each layer.

Figure 8.2 illustrates the per-frame normalized likelihoods on testing in real-
time both HMMs and LHMMs with the different office activities. By “normal-
ized” likelihoods, we denote the likelihoods whose values have been bounded
between 0 and 1. They are given by:

NormLi =
Li − minj(Lj)

maxj(Lj) − minj(Lj)
,

for i = 1, ..., N , j = 1, ..., N , and N models.
Note that, in the case of LHMMs, the likelihoods are those corresponding

to the highest level in the hierarchy, because this is the level that models the
office activities.

Finally, we carried out a different set of experiments. We trained and tested
the performance of LHMMs and HMMs on 60 minutes of recorded office ac-
tivity data (10 minutes per activity and 6 activities). Given that it was recorded
activity data, we knew the ground truth for each activity. The first few seconds
of each dataset were ignored for classification purposes, due to the lag of the
models in recognizing each activity. We used 50% of the data (i.e 5 minutes
per activity) for training. In particular, we used about 20 sequences of each
class for the audio and video HMMs (first layer) and 10 sequences of each
office activity for the behavior HMMs (second layer). The rest of the data (
i.e., 5 min per activity) was used for testing. The results are summarized in
Table 8.1. The average accuracies of both HMMs and LHMMs on testing data
were of 72.68% (STD 8.15) and 99.7% (STD 0.95), respectively. In our ex-
perience with the system, HMMs normally need more training under similar
office conditions (lighting, acoustics, etc.) than that of the particular testing
data to obtain reasonable classification results. On the other hand, we can nor-
mally reuse at least the highest level in LHMMs that have been trained under
different office conditions than that of testing.
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Table 8.1. Confusion matrix for tuned CP HMMs and generic LHMMs on 30 min of real data,
where PC=Phone Conversation; FFC=Face to Face Conversation; P=Presentation; O=Other
Activity; NA=Nobody Around; DC=Distant Conversation.

Confusion Matrix for tuned CP HMMs
PC FFC P O NA DC

PC 0.8145 0.0679 0.0676 0.0 0.0 0.05
FFC 0.0014 0.9986 0.0 0.0 0.0 0.0

P 0.0 0.0052 0.9948 0.0 0.0 0.0
O 0.0345 0.0041 0.003 0.9610 0.0 0.0

NA 0.0341 0.0038 0.0010 0.2524 0.7086 0.0
DC 0.0076 0.0059 0.0065 0.0 0.0 0.98

Confusion Matrix for generic LHMMs
PC FFC P O NA DC

PC 1.0 0.0 0.0 0.0 0.0 0.0
FFC 0.0 1.0 0.0 0.0 0.0 0.0

P 0.0 0.0 1.0 0.0 0.0 0.0
O 0.0 0.0 0.0 1.0 0.0 0.0

NA 0.0 0.0 0.0 0.0 1.0 0.0
DC 0.0 0.0 0.0 0.0 0.0034 0.9966

5.1 Discussion
Some observations that can be drawn from our experiments are:

1. For the same amount of training data, the accuracy of LHMMs is signif-
icantly higher than that of HMMs. The number of parameters of the CP
HMMs is higher than that of LHMMs for the office activities being mod-
eled in our experiments. As a consequence, for the same limited amount of
training data, HMMs are more prone to overfitting and have worse gener-
alization than LHMMs.

2. LHMMs are more robust to changes in the environment than HMMs. In our
experiments, the HMMs were more sensitive to changes in the environment
than LHMMs. We could not obtain any reasonable performance on the CP
HMMs had they not been tuned to the particular testing environment and
conditions. We had to retrain the CP HMMs every time we needed to test
them under some particular conditions. On the contrary, at least the highest
layer of our LHMMs did not require retraining, despite the changes in office
conditions. This is due to the fact that the CP HMMs carry out high-level
inferences about the user’s activity, directly from the raw sensor signals,
whereas LHMMs isolate the sensor signals in different sub-HMM models
for each input modality. Due to its layered structure, LHMMs are expected
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to be more robust to noise in the sensor signals and at the same time to have
higher accuracy than the CP HMMs.

3. The discriminative power of LHMMs is notably higher than that of HMMs.
By discriminative power, we mean the distance between the log-likelihoods
of the two most likely models. The log-likelihoods for the CP HMMs tend
to be much closer to each other, making them prone to instability and errors
in the classification. Note in Figure 8.2 how the normalized likelihoods
between the two best models in CP HMMs are much closer than that in
LHMMs. This phenomenon is particularly noticeable in the Presentation,

Face to Face Conversation, Distant Conversation, and Nobody Around

activities.

6. Related Representations
HMMs and their extensions, e.g., CHMMs, PHMMs, VHMMs, including

the architecture proposed in this chapter, LHMMs, are particular cases of tem-
poral or dynamic graphical models (DGMs). Given suitable independence
relationships among the variables over time, DGMs can provide a computa-
tionally efficient and sufficiently expressive solution to the problem of human
activity modeling and recognition. DGMs have several properties that are use-
ful for human behavior modeling: they can handle incomplete data as well
as uncertainty; they are trainable; they encode causality (conditional indepen-
dency) in a natural way; algorithms exist for doing predictive inference; they
offer a framework for combining prior knowledge and data; and finally they
are modular and parallelizable.

A formulation for Hierarchical HMMs was first proposed in [Fine et al.,
1998] in work that extended the standard Baum-Welch procedure and pre-
sented an estimation procedure of the model parameters from unlabeled data.
A trained model was applied to an automatic hierarchical parsing of an obser-
vation sequence as a dendrogram. Because of the computational complexity
of the original algorithm, the authors suggest an efficient approximation to the
full estimation scheme. The approximation could further be used to construct
models that adapt both their topology and parameters. The authors briefly
illustrate the performance of their models on natural written English text in-
terpretation and in English handwriting recognition. Recently, Murphy and
Paskin [Murphy and Paskin, 2001] introduced a linear-time inference algo-
rithm for HHMMs.

Hoey [Hoey, 2001] proposes the use of a hierarchical framework for event
detection. Although being a nice framework it does not seem to be particu-
larly suited for a task with real-time constraints, because it requires the manual
segmentation of the audio/video streams. A new architecture of HMMs called
embedded HMMs is proposed in [Nefian and Hayes, 1999a]. Such HMMs are
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(a) Single HMMs

(b) LHMMs

Figure 8.2. Log-likelihoods for each of the activity models over time when tested in real time
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tuned towards applications that handle two-dimensional data – and particularly
images. One HMM models one dimension of the data while its state variables
correspond to the other dimension of the data. They have successfully applied
these to the task of face recognition.

In the original formulation of [Fine et al., 1998] and other related papers
([Hoey, 2001; Murphy and Paskin, 2001]), each state of the architecture is
another HMM or variation, and therefore represents a time sequence of the raw
signals. In our model, however, at any given level of the hierarchy, there are
multiple HMMs each corresponding to a certain concept (for example, we have
six HMMs corresponding to different classes of audio signals - speech, silence,
music, etc). These HMMs take as observations either the features computed
from the raw signals – at the lowest level – or the likelihoods coming from the
previous level – at any other level.

The LHMM approach is most closely related to the concept of Stacked Gen-
eralization [Wolpert, 1992], where the main idea is to learn classifiers on top of
classifiers. Stacked Generalization is a technique proposed to use learning at
multiple levels. A learning algorithm is used to determine how the outputs of
the base classifiers should be combined. For example, in a two-layer stacked
classifier, the original dataset constitutes the “level zero” data. All the base
classifiers run at this level. The “level one” data are the outputs of the base clas-
sifiers. Another learning process occurs using as input the “level one” data and
as output the final classification results. This is a more sophisticated technique
than cross-validation and has been shown to reduce the classification error due
to the bias in the classifiers. Note that, while HMMs are generative proba-
bilistic models, they can also be treated as classifiers. From this perspective,
we can describe our layered HMMs as a representation for learning different
stacked classifiers and using them to do the classification of temporal concepts
with different time granularities. Rather than training the models at all the lev-
els at the same time, the parameters of the HMMs at each level can be trained
independently (provided that the previous level has been already trained), in a
bottom-up fashion, by means of the traditional Baum-Welch algorithm. The
inputs (observations) of each level are the classification outputs of the previous
level, such that only at the lowest level the observations (the leaves of the tree)
are the feature vectors extracted directly from sensor signals.

7. Summary
We have described the principles and implementation of a real-time, mul-

timodal approach to human activity recognition in an office environment. We
have introduced a layered HMM representation (LHMM) that has the abil-
ity to capture different levels of abstraction and corresponding time granulari-
ties. The representation and associated inference procedure appear to be well
matched to the decomposition of signals and hypotheses for discriminating a
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set of activities in an office setting. Our models are learned from data and can
be trained on-the-fly by the user. Some important characteristics of LHMMs
when compared to HMMs are:

1 LHMMs can encode the hierarchical temporal structure of the office activ-
ity modeling problem;

2 LHMMs, due to their layered structure, are easier to interpret, and, thus,
easier to refine and improve, than the corresponding CP HMMs;

3 the dimensionality of the state space that needs to be learned from data is
smaller in LHMMs than that of their corresponding CP HMMs; in conse-
quence, for the same amount of training data, LHMMs are less prone to
overfitting than HMMs;

4 LHMMs can encode different levels of abstraction and time granularities
that can be linked to different levels of representation for human behaviors;

5 the modularity of LHMMs allows the selective retraining of the levels that
are most sensitive to environmental or sensor variation, minimizing the bur-
den of training during transfer among different environments.

We have tested the performance of LHMMs in SEER, a real-time system for
recognizing typical office activities. SEER can accurately recognize when a user
is engaged in a phone conversation, giving a presentation, involved in a face-
to-face conversation, doing some other work in the office, or when a distant
conversation is occurring in the corridor. We believe that our framework can
be used to enhance multimodal solutions on the path to more natural human-
computer interaction.

There are two kind of theoretical issues that need to be addressed. First one
deals with refining the probabilistic model that we have used. This involves
understanding the influence of the layered decomposition on the size of the pa-
rameter space, and the resulting effects on learning requirements and accuracy
of inference for different amounts of training. Alternate decompositions lead
to layers of different configurations and structure; we are interested in under-
standing better how to optimize the decompositions. We are also working on
comparing our LHMMs representation to other hierarchical representations,
and on exploring the use of unsupervised and semi-supervised methods for
training one or more layers of the LHMMs without explicit training effort.
Finally, we are exploring several applications of inference about context.

However, the even more important issue deals with understanding these
classifiers that are being used. This is important in developing better classifiers
and solving more real world problems. This issue was extensively addressed
in Chapters 2 and 3.



Chapter 9

APPLICATION:
MULTIMODAL EVENT DETECTION

In Chapter 8, we have seen how probabilistic models can be used to develop
classifiers that can do inference of high level human activities in an office en-
vironment. In this chapter, we will look into another application: multimodal
event detection.

Detecting semantic events from audio-visual data with spatio-temporal sup-
port is a challenging multimedia understanding problem. The difficulty lies in
the gap that exists between low-level features and high-level semantic labels.
Often, one needs to depend on multiple modalities to interpret the semantics
reliably. This necessitates efficient schemes, which can capture the character-
istics of high level semantic events by fusing the information extracted from
multiple modalities.

Research in fusing multiple modalities for detection and recognition has
attracted considerable attention. Most techniques for fusing features from
multiple modalities, having temporal support are based on Markov mod-
els. Examples include the Hidden Markov Model (HMM) [Rabiner, 1989]
and several variants of the HMM, like the Coupled-HMM (CHMM) [Brand
et al., 1997], Factorial-HMM [Ghahramani and Jordan, 1997], the Hierarchi-
cal HMM [Naphade et al., 1998], etc. A characteristic of these models is the
stage, at which the features from the different modalities are merged.

We present a novel algorithm, which combines feature with temporal sup-
port from multiple modalities. Two main features that distinguish our model
from existing schemes are:

1 the ability to account for non-exponential duration, and

2 the ability to map discrete state input sequences to decision sequences.

The standard algorithms modeling the video-events use HMMs which mod-
els the duration of events as an exponentially decaying distribution. However,
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we argue that the duration is an important characteristic of each event and we
demonstrate it by the improved performance over standard HMMs. We test
the model on the audio-visual event explosion. Using a set of hand-labeled
video data, we compare the performance of our model with and without the
explicit model for duration. We also compare performance of the proposed
model with the traditional HMM and observe that the detection performance
can be improved.

1. Fusion Models: A Review

Audio-visual analysis to detect the semantic concepts in videos poses a chal-
lenging problem. One main difficulty arises from the fact that the different sen-
sors are noisy in terms of the information they contain about different semantic
concepts. For example, based on pure vision, its hard to make out between a
explosion and normal fire. Similarly, audio alone may give confusing infor-
mation. On one hand one may be able to filter out the disambiguity arising
from one source of information by looking (analyzing) other source. While,
on the other hand, these different source may provide complimentary informa-
tion which may be essential in inference.

Motivated by these difficulties, in the past few years a lot of research has
gone into developing algorithms for fusing information from different modali-
ties. Since different modalities may not be sampled at the same temporal rate,
it becomes a challenging problem to seamlessly integrate different modalities
(e.g. audio is normally sampled at 44KHz whereas video is sampled at 30
frames/s). At the same time, one may not even have the synchronized streams
(sources of information) or the sources of information may have very different
characteristics (audio - continuous, inputs to the computer through keyboard -
discrete).

If we assume that one can get features from the different streams on a
common scale of time, the two main categories of fusion models are those
that favor early integration of features versus those that favor late integration.
Early integration refers to combining the information at the level of raw fea-
tures. Simple early integration is often observed in the form of concatenation
of weighted features from different streams. More involved models of early in-
tegration have been proposed by using some form of Markov models. Brand et
al. [Brand et al., 1997] have proposed the coupled hidden Markov models and
used it for detection of human activities. Ghahramani et al. [Ghahramani and
Jordan, 1997] have proposed the factorial hidden Markov models. The main
difference in these models arises from the conditional independence assump-
tions that they make between the states of the different information sources.
They assume that the different sources are tightly coupled and model them
using a single generative process.
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In many situations, especially when the different sources are providing com-
plimentary information one may prefer late integration. This refers to doing
inferencing of each stream independently of the others and then combining the
output of the two. This is especially important and shows improved results as
now one essentially looks at the essential information contained in the differ-
ent streams and the sensor dependent characteristics do not play any role. It
also allows one to learn different models for each source independently of one
another and then combine the output. One may simply look at the weighted de-
cisions of different sources or may actually use probabilistic models to model
the dependencies. For example, Garg et al. [Garg et al., 2000b; Garg et al.,
2003] have proposed the use of dynamic Bayesian networks over the output
of the different streams to solve the problem of speaker detection. Similarly,
Naphade et al. [Naphade et al., 1998] have proposed the use of hierarchical
HMMs for solving the problem of event detection. Another powerful model to
solve the of activity recognition is LHMMs, as was seen in the Chapter 8.

We observed that in the case of movie, the audio and the visual streams nor-
mally carry complimentary information. For example, a scene of explosion is
not just characterized by a huge thunder but also a visual effect corresponding
to bright red and yellow colors. Motivated by this fact we propose the use of
late coupling which seems to suit better for this framework.

Fusion of multimodal feature streams (especially audio and visual feature
streams) has been applied to problems like bimodal speech [Chen and Rao,
1998], multimodal speaker detection [Garg et al., 2000b], summarization of
video [Nakamura and Kanade, 1997], query by audio-visual content [Naphade
et al., 2001], and event detection in movies [Naphade et al., 1998]. Examples
of fusion of other streams include fusion of text and image content, motion,
and image content etc. In Chapter 8, we saw the fusion of audio, video, along
with the computer activity.

2. A Hierarchical Fusion Model
This chapter discusses the problem of fusing multiple feature streams enjoy-

ing spatio-temporal support in different modalities. We present a hierarchical
fusion model (see Figure 9.1), which makes use of late integration of interme-
diate decisions.

To solve the problem we propose a new fusion model: the Hierarchical Input
output duration dependent Markov model. There are three main considerations
that have led us to the particular choice of the fusion architecture.

We argue that, the different streams contain information which is corre-
lated to another stream only at high level. This assumption allows us to
process output of each source independently of one another. Since these
sources may contain information which has highly temporal structure, we
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propose the use of hidden Markov models. These models are learned from
the data and then we decode the hidden state sequence, characterizing the
information describing the source at any given time.

We argue that the different sources contain independent information (this
assumption may not be true in general and the effect of this on the classi-
fication error was analyzed in Chapter 2). At high level, the output of one
source is essentially independent of the information contained in the other.
However, conditioned upon a particular bi-modal concept, these different
sources may be dependent on one another. This suggests the use of input
output Markov model. These models are able to capture the correlation
that is present between the different sources. These are discussed in detail
in the next section. In simple terms, these can be thought of HMMs with
observation dependent transition probability matrix.

Finally, an important characteristic of semantic concepts in videos is their
duration. This points to the important limitation of hidden Markov models.
In HMMs the probability of staying in any particular state decays expo-
nentially. This is the direct outcome of the one Markov property of these
models. To alleviate this problem, we explicitly model these probabili-
ties. This leads us to what we call duration dependent input output Markov
model. Note that because of this explicit modeling of the state duration,
these are not really Markov models but are what have been called in past
semi-Markov models.

2.1 Working of the Model
Consider S streams of features. For each stream, consider feature vectors

f
(s)
1 , . . . , f

(s)
Tff corresponding to time instants t=1, . . . , T . Consider two hy-

potheses HiHH , i ∈ {0, 1} corresponding to the presence and absence of an event
E in the feature stream. Under each hypothesis we assume that the feature
stream is generated by a hidden Markov model [Rabiner, 1989]. We estimate
the parameters of the HMM under each hypothesis, by using the EM algo-
rithm [Rabiner, 1989] and a labeled training set. Having estimated the param-
eters of the models under both hypotheses, we then evaluate the best state se-
quence and hypothesis for the test set through maximum-likelihood detection.
Once the state sequence for each feature stream is obtained, we can use these
intermediate-level decisions from that feature stream [Naphade et al., 1998] in
a hierarchical approach.

Figure 9.1 shows two streams one referring to audio features or observa-
tions AO1, ...AOT and the other to video features V O1, . . . , V OT . The media
features act as observations for the media HMMs. The HMMs decode the hid-
den state sequence A1, . . . , AT and V1VV , . . . , VTVV . These state sequences form
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the input to our top level DDIOMM, which then predicts high level semantic
information (as a decision sequence Q1, . . . , QT ).

Each state in the media HMMs represents a stationary distribution and by
using the Viterbi decoder over each feature stream, we essentially cluster
features spatio-temporally and quantize them through state identities. State-
sequence-based processing using trained HMMs can thus be thought of as a
form of guided spatio-temporal vector quantization for reducing the dimen-
sionality of the feature vectors from multiple streams [Naphade et al., 1998].
In the next section we present a model for fusing the state-sequence based
features from multiple modalities and an algorithm for estimating the best de-
cision sequence.

2.2 The Duration Dependent Input Output Markov Model
Consider a sequence Y of symbols y1, . . . , yT where yi ∈ {1, . . . , N}. Con-

sider another sequence Q of symbols q1, . . . , qT , qi ∈ {1, . . . , M}. The model
between the dotted lines in Figure 9.1 illustrates a Bayesian network involving
these two sequences. Here y = {A, V } (i.e. Cartesian product of the audio and
video sequence) . This network can be thought of as a mapping of the input
sequence Y to the output sequence Q. We term this network the Input Out-
put Markov Model. This network is close in spirit to the input output hidden
Markov model [Bengio and Frasconi, 1996].

The transition in the output sequence is initially assumed to be Markovian.
This leads to an exponential duration density model. Let us define A = {Aijk},
i, j ∈ {1, . . . , M}, k ∈ {1, . . . , N} as the map. Aijk = P (qt = j|qt−1 =
i, yt = k) is estimated from the training data through frequency counting and
tells us the probability of the current decision state given the current input
symbol and the previous state. Once A is estimated, we can then predict the
output sequence Q given the input sequence Y using Viterbi decoding.

The algorithm for decoding the decision is presented below.

δt(j) = max
Qt

P (q1, . . . , qt−1, qt = j|y1, . . . , yt), (9.1)

where Qt indicates all possible decision sequences until time t − 1. Then this
can be recursively represented:

δt(j) = max
i=1:M

δt−1(i)Aijk

∆t(j) = argmax
i=1:M

δt−1(i)Aijk

P  = max
i=1:M

δT (i)
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A1 A2 A3 A4

V1 V2 V3 V4
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A1 A2 A3 A4

Video HMM

Audio HMM

DDIOHMM

1AO AO AO AO2 3 4

VO1 VO2 VO3 VO4

Q1 Q2 Q3 Q4

Figure 9.1. Hierarchical multimedia fusion. The media HMMs are responsible for mapping
media observations to state sequences. The fusion model, which lies between the dotted lines,
uses these state sequences as inputs and maps them to output decision sequences.
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and P  is the probability of the best sequence given the input and the paramet-
ric mapping A. We can then backtrack the best sequence Q as follows:

q
T = arg max

i=1:M
δT (i)

Backtracking

for l = 1 : T − 1
q
T−l = ∆T−l+1(q

T−l+1).

In the above algorithm, we have allowed the density of the duration of each
decision state to be exponential. This may not be a valid assumption. To rec-
tify this we now introduce the duration dependent input output Markov model
(DDIOMM). Our approach in modeling duration in the DDIOMM is similar
to that by Ramesh et al. [Ramesh and Wilpon, 1992].

This model, in its standard form, assumes that the probability of staying in
a particular state decays exponentially with time. However, most audio-visual
events have finite duration not conforming to the exponential density. Ramesh
et al. [Ramesh and Wilpon, 1992] have shown that results can improve by
specifically modeling the duration of staying in different states. In our cur-
rent work, we show how one can enforce it in case of models like duration
dependent IOMM.

Let us define a new mapping function:

A = {Aijkd}, i, j ∈ {1, . . . ,M}, k ∈ {1, . . . , N}, d ∈ {1, . . . , D}

where
Aijkd = P (qt = j|qt−1 = i, dt−1(i) = d, yt = k).

A can again be estimated from the training data by frequency counting. We
now propose the algorithm to estimate the best decision sequence given A and
the input sequence Y . Let

δt(j, d) = max
Qt

P (q1, . . . , qt−1, qt = j, dt(j) = d|y1, . . . , yt) (9.2)

where Qt indicates all possible decision sequences until time t − 1 and dt(i)
indicates the duration in terms of discrete time samples for which the path has
continued to be in the state qt. This can be recursively computed as follows:

δ1(j, 1) = P (q1|y1)
δ1(j, d) = 0 d > 1

δt+1(j, 1) = max
i=1:M i �=�� j

max
d=1:D

δt(i, d)Aijkd

δt+1(j, d + 1) = δt(j, d)Ajjkd.
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Let

∆t(j, i) = arg max
d=1:D

δt−1(i, d)Aijkd 1 ≤ i ≤ j i �=�� j

Ψt(j) = arg max
i=1:M

δt−1(i,∆t(j, i))Aijk∆t(j,i).

Finally,

η(i) = arg max
d=1:D

δT (i, d) 1 ≤ i ≤ M

P  = max
i=1:M

δT (i, η(i)).

where P  is the probability of the best sequence given the input and the para-
metric mapping A. We can then backtrack the best sequence Q as follows:

q
T = arg max

i=1:M
δT (i, η(i))

Backtracking

x = η(q
T ) t = T z = x

while t > 1
q
t−x+l = q

t l = 1, . . . , z − 1
q
t−x = Ψt−x+1(q

t )
z = ∆t−x+1(q

t , q

t−x)

t = t − x x = z.

Using the above equations, one can decode the hidden state sequence. Each
state (or the group of states) corresponds to the state of the environment or
the particular semantic concept that is being modeled. In the next section, we
compare the performance of these models with the traditional HMMs and show
that one can get huge improvements.

3. Experimental Setup, Features, and Results
We compare the performance of our proposed algorithm with the IOMM as

well as with the traditional HMM with their states being interpreted as deci-
sions. We use the domain of movies and the audio-visual event explosion for
comparison.

Data from a movie is digitized. We have over 10000 frames of video data
and the corresponding audio data split in 9 clips. The data is labeled manually
to construct the ground truth. Figure 9.2 show some typical frames of the video
sequence.

From the visual stream we extract several features describing the color
(HSV histograms, multiple order moments), structure (edge direction his-
togram), and texture (statistical measures of gray level co-occurrence matrices
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at multiple orientations) of the stream [Naphade and Huang, 2000a]. From the
audio stream we extract 15 MFCC coefficients, 15 delta coefficients, and 2 en-
ergy coefficients [Naphade and Huang, 2000b]. As described in Section 9.2,
we train HMMs for the positive as well as the negative hypothesis for the event
explosion. HMMs for audio streams and video streams are separately trained.
Each HMM has 3 states corresponding (intuitively) to the beginning, middle,
and end state of the event. Using the pair of models for the positive and neg-
ative hypothesis we then segment each clip into two types of segments corre-
sponding to the presence or absence of the event. Within each segment the best
state sequence decoded by the Viterbi algorithm is available to us. This forms
the input sequence Y . Similarly, with hs denoting the number of hypotheses
for stream s, the total number of distinct symbols needed to describe the deci-
sion for each audio-visual frame jointly is given by

∏S
s=1 hs. This forms the

symbols of our decision sequence Q.

Table 9.1. Comparing the overall classification error.

HMM IOMM DDIOMM
Classification Error (%) 20.15 18.52 13.23

The results are reported using a leave-one-clip-out strategy. The quantum of
time is a single video frame. To report performance objectively, we compare
the prediction of the fusion algorithm for each video frame to our ground truth.
Any difference between the two constitutes to a false alarm or mis-detection.
We also compare the classification error of the three schemes. Figure 9.3(a)
shows the error for each clip using the three schemes. Amongst the three
schemes, the maximum error across all clips is minimum for the DDIOMM.
Table 9.1 shows the overall classification error across all the clips. Clearly the
overall classification error is the least for the DDIOMM.

We also compare the detection and false alarm rates of the three schemes.
Figure 9.3(b) shows the detection and false alarm for the three schemes. Fig-
ure 9.3 and Table 9.1 thus show that the DDIOMM performs better event de-
tection than the simple IOMM as well as the HMM.

4. Summary
In this chapter, we have investigated a new model, the duration dependent

input output Markov model (DDIOMM) for performing integration of interme-
diate decisions from different feature streams to detect events in Multimedia.
The model provides a hierarchical mechanism to map media features to output
decision sequences through intermediate state sequences. It also supports dis-
crete non-exponential duration models for events. By combining these two fea-
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Figure 9.2. Some typical frames from a Video Clip.
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Figure 9.3. (a) Classification error for the nine video clips using the leave one clip out eval-
uation strategy. The maximum error for the DDIOMM is the least among the maximum error
of the three schemes. (b) Comparing detection and false alarms. DDIOMM results in best
detection performance.
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tures in the framework of generative models for inference, we present a simple
and efficient decision sequence decoding Viterbi algorithm. We demonstrate
the strength of our model by experimenting with audio-visual data from movies
and the audio-visual event explosion. Experiments comparing the DDIOMM
with the IOMM as well as the HMM reveal that the DDIOMM results in lower
classification error and improves detection.

As the results show, this models performs fairly well on the task of event de-
tection in videos. This model and the LHMM presented in Chapter 8, fall in the
category of what we call probabilistic classifiers. In the applications discussed
and in many other applications in the past, it has been observed that probabilis-
tic classifiers achieve very good performance in solving the real world prob-
lems. It is interesting to note, however, that these classifiers make assumptions
which are often unrealistic or at least seems to be unrealistic. In general, one
makes assumptions that audio is independent of video, or we assume that the
data can be modeled using a HMM with only few hidden states modeling a
one-Markov process (although we did relaxed this assumption in this chapter)
and it is not clear if these assumptions will or does holds in practice.

The question that arises is how come these models still perform fairly well.
Are we going to gain much if instead we decide to model the true distribution
as against making these assumptions? In Chapter 2, we quantified these details
and showed how the additional penalty on the classification error was related
to the mismatch between the true and the modeled distribution.



Chapter 10

APPLICATION:
FACIAL EXPRESSION RECOGNITION

The most expressive way humans display emotions is through facial expres-
sions. Humans detect and interpret faces and facial expressions in a scene with
little or no effort. Still, development of an automated system that accomplishes
this task is rather difficult. There are several related problems: detection of an
image segment as a face, extraction of the facial expression information, and
classification of the expression (e.g., in emotion categories). A system that
performs these operations accurately and in real time would be a major step
forward in achieving a human-like interaction between the man and machine.

In this chapter, we compare the different approaches of the previous chap-
ters for the design of a facial expression recognition system. Our experiments
suggest that using the TAN classifiers and the stochastic structure search algo-
rithm described in Chapter 7 outperform previous approaches using Bayesian
network classifiers, or even compared to Neural networks. We also show ex-
perimentally that the learning the structure with the SSS algorithm holds the
most promise when learning to classify facial expressions with labeled and
unlabeled data.

1. Introduction
In recent years there has been a growing interest in improving all aspects of

the interaction between humans and computers. This emerging field has been
a research interest for scientists from several different scholastic tracks, i.e.,
computer science, engineering, psychology, and neuroscience. These studies
focus not only on improving computer interfaces, but also on improving the
actions the computer takes based on feedback from the user. Feedback from
the user has traditionally been given through the keyboard and mouse. Other
devices have also been developed for more application specific interfaces, such
as joysticks, trackballs, datagloves, and touch screens. The rapid advance of
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technology in recent years has made computers cheaper and more powerful,
and has made the use of microphones and PC-cameras affordable and easily
available. The microphones and cameras enable the computer to “see” and
“hear,” and to use this information to act. A good example of this is the “Smart-
Kiosk” [Garg et al., 2000a].

It is argued that to truly achieve effective human-computer intelligent inter-
action (HCII), there is a need for the computer to be able to interact naturally
with the user, similar to the way human-human interaction takes place.

Human beings possess and express emotions in everyday interactions with
others. Emotions are often reflected on the face, in hand and body gestures,
and in the voice, to express our feelings or likings. While a precise, generally
agreed upon definition of emotion does not exist, it is undeniable that emotions
are an integral part of our existence. Facial expressions and vocal emotions are
commonly used in everyday human-to-human communication, as one smiles
to show greeting, frowns when confused, or raises one’s voice when enraged.
People do a great deal of inference from perceived facial expressions: “You
look tired,” or “You seem happy.” The fact that we understand emotions and
know how to react to other people’s expressions greatly enriches the interac-
tion. There is a growing amount of evidence showing that emotional skills
are part of what is called “intelligence” [Salovey and Mayer, 1990; Goleman,
1995]. Computers today, on the other hand, are still quite “emotionally chal-
lenged.” They neither recognize the user’s emotions nor possess emotions of
their own.

Psychologists and engineers alike have tried to analyze facial expressions
in an attempt to understand and categorize these expressions. This knowledge
can be for example used to teach computers to recognize human emotions from
video images acquired from built-in cameras. In some applications, it may not
be necessary for computers to recognize emotions. For example, the com-
puter inside an automatic teller machine or an airplane probably does not need
to recognize emotions. However, in applications where computers take on a
social role such as an “instructor,” “helper,” or even “companion,” it may en-
hance their functionality to be able to recognize users’ emotions. In her book,
Picard [Picard, 1997] suggested several applications where it is beneficial for
computers to recognize human emotions. For example, knowing the user’s
emotions, the computer can become a more effective tutor. Synthetic speech
with emotions in the voice would sound more pleasing than a monotonous
voice. Computer “agents” could learn the user’s preferences through the users’
emotions. Another application is to help the human users monitor their stress
level. In clinical settings, recognizing a person’s inability to express certain
facial expressions may help diagnose early psychological disorders.

This chapter focuses on learning how to classify facial expressions with
video as the input, using Bayesian networks. We have developed a real time
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facial expression recognition system [Cohen et al., 2002b; Sebe et al., 2002].
The system uses a model based non-rigid face tracking algorithm to extract
motion features that serve as input to a Bayesian network classifier used for
recognizing the different facial expressions.

There are two main motivations for using Bayesian network classifiers in
this problem. The first is the ability to learn with unlabeled data and infer the
class label even when some of the features are missing (e.g., due to failure
in tracking because of occlusion). Being able to learn with unlabeled data
is important for facial expression recognition because of the relatively small
amount of available labeled data. Construction and labeling of a good database
of images or videos of facial expressions requires expertise, time, and training
of subjects and only a few such databases are available. However, collecting,
without labeling, data of humans displaying expressions is not as difficult. The
second motivation for using Bayesian networks is that it is possible to extend
the system to fuse other modalities, such as audio, in a principled way by
simply adding subnetworks representing the audio features.

2. Human Emotion Research
There is a vast body of literature on emotions. The multifaceted nature pre-

vents a comprehensive review, we will review only what is essential in support-
ing this work. Recent discoveries suggest that emotions are intricately linked
to other functions such as attention, perception, memory, decision making, and
learning. This suggests that it may be beneficial for computers to recognize
the human user’s emotions and other related cognitive states and expressions.
In this chapter, we concentrate on the expressive nature of emotion, especially
those expressed in the voice and on the face.

2.1 Affective Human-computer Interaction
In many important HCI applications such as computer aided tutoring and

learning, it is highly desirable (even mandatory) that the response of the com-
puter takes into account the emotional or cognitive state of the human user.
Emotions are displayed by visual, vocal, and other physiological means. Com-
puters today can recognize much of what is said, and to some extent, who said
it. But, they are almost completely in the dark when it comes to how things are
said, the affective channel of information. This is true not only in speech, but
also in visual communications despite the fact that facial expressions, posture,
and gesture communicate some of the most critical information: how people
feel. Affective communication explicitly considers how emotions can be rec-
ognized and expressed during human-computer interaction. Addressing the
problem of affective communication, Bianchi-Berthouze and Lisetti [Bianchi-
Berthouze and Lisetti, 2002] identified three key points to be considered when
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developing systems that capture affective information: embodiment (experi-
encing physical reality), dynamics (mapping experience and emotional state
with its label), and adaptive interaction (conveying emotive response, respond-
ing to a recognized emotional state).

In most cases today, if you take a human-human interaction, and replace one
of the humans with a computer, then the affective communication vanishes.
Furthermore, this is not because people stop communicating affect - certainly
we have all seen a person expressing anger at his machine. The problem arises
because the computer has no ability to recognize if the human is pleased, an-
noyed, interested, or bored. Note that if a human ignored this information,
and continued babbling long after we had yawned, we would not consider that
person very intelligent. Recognition of emotion is a key component of intelli-
gence [Picard, 1997]. Computers are presently affect-impaired. Furthermore,
if you insert a computer (as a channel of communication) between two or more
humans, then the affective bandwidth may be greatly reduced. Email may be
the most frequently used means of electronic communication, but typically all
of the emotional information is lost when our thoughts are converted to the
digital media.

Research is therefore needed for new ways to communicate affect through
computer-mediated environments. Computer-mediated communication today
almost always has less affective bandwidth than “being there, face-to-face”.
The advent of affective wearable computers, which could help amplify affec-
tive information as perceived from a person’s physiological state, are but one
possibility for changing the nature of communication.

2.2 Theories of Emotion
There is little agreement about a definition of emotion. Many theories of

emotion have been proposed. Some of these could not be verified until re-
cently when measurement of some physiological signals become available. In
general, emotions are short-term, whereas moods are long-term, and tempera-
ments or personalities are very long-term [Jenkins et al., 1998]. A particular
mood may sustain for several days, and temperament for months or years. Fi-
nally, emotional disorders can be so disabling that people affected are no longer
able to lead normal lives.

Darwin [Darwin, 1890] held an ethological view of emotional expressions,
arguing that the expressions from infancy and lower life forms exist in adult
humans. Following the Origin of Species he wrote The Expression of the
Emotions in Man and Animals. According to him, emotional expressions are
closely related to survival. Thus in human interactions, these nonverbal ex-
pressions are as important as the verbal interaction.

James [James, 1890] viewed emotions not as causes but as effects. Sit-
uations arise around us which cause changes in physiological signals. Ac-
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cording to James, “the bodily changes follow directly the perception of the
exciting fact, and that our feeling of the same changes as they occur is the
emotion.” Carl Lange proposed a similar theory independently at around the
same time. This is often referred to as the “James-Lange” theory of emotion.
Cannon [Cannon, 1927], contrary to James, believed that emotions are first
felt, then exhibited outwardly causing certain behaviors.

Despite the many theories, it is evident that people display these expressions
to various degrees. One frequently studied task is the judgment of emotions—
how well can human observers tell the emotional expressions of others, in the
voice, on the face, etc? Related questions are: Do these represent their true
emotions? Can they be convincingly portrayed? How well can people conceal
their emotions? In such tasks, researchers often use two different methods to
describe the emotions.

One approach is to label the emotions in discrete categories, i.e., human
judges must choose from a prescribed list of word labels, such as joy, fear, love,
surprise, sadness, etc. One problem with this approach is that the stimuli may
contain blended emotions. Also, the choice of words may be too restrictive, or
culturally dependent.

Another way is to have multiple dimensions or scales to describe emotions.
Instead of choosing discrete labels, observers can indicate their impression of
each stimulus on several continuous scales, for example, pleasant–unpleasant,
attention–rejection, simple–complicated, etc. Two common scales are valence
and arousal. Valence describes the pleasantness of the stimuli, with positive
(or pleasant) on one end, and negative (or unpleasant) on the other. For ex-
ample, happiness has a positive valence, while disgust has a negative valence.
The other dimension is arousal or activation. For example, sadness has low
arousal, whereas surprise has high arousal level. The different emotional la-
bels could be plotted at various positions on a two-dimensional plane spanned
by these two axes to construct a 2D emotion model [Lang, 1995]. Schols-
berg [Schlosberg, 1954] suggested a three-dimensional model in which he had
attention–rejection in addition to the above two.

Another interesting topic is how the researchers managed to obtain data for
observation. Some people used posers, including professional actors and non-
actors. Others attempted to induce emotional reactions by some clever means.
For example, Ekman showed stress-inducing film of nasal surgery in order to
get the disgusted look on the viewers’ faces. Some experimenter even dumped
water on the subjects or fired blank shots to induce surprise, while others used
clumsy technicians who made rude remarks to arouse fear and anger [Hilgard
et al., 1971]. Obviously, some of these are not practical ways of acquiring
data. After studying acted and natural expressions, Ekman concluded that ex-
pressions can be convincingly portrayed [Ekman, 1982].
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A legitimate question that should be considered when doing multimodal
emotion recognition is how much information does the face, as compared
to voice, speech, and body movement, provide about emotion. Most experi-
menters found that the face is more accurately judged, produces higher agree-
ment, or correlates better with judgments based on full audiovisual input than
on voice or speech input [Mehrabian, 1968; Ekman, 1982]. Ekman [Ekman,
1982] found that the relative weight given to facial expression, speech, and
body cues depend both on the judgment task (e.g., rating the stimulus subject’s
dominance, sociability, or relaxation) and the conditions in which the behavior
occurred (e.g., subjects frankly describing positive reactions to a pleasant film
or trying to conceal negative feelings aroused by a stressful film).

The whole question of how much information is conveyed by “separate"
channels may inevitably be misleading. There is no evidence that individuals
in actual social interaction selectively attend to another person’s face, body,
voice, or speech or that the information conveyed by these channels is simply
additive. The central mechanisms directing behavior cut across the channels,
so that, for example, certain aspects of face, body, voice, and speech are more
spontaneous and others are more closely monitored and controlled. It might
well be that observers selectively attend not to a particular channel but to a
particular type of information (e.g., cues to emotion, deception, or cognitive
activity), which may be available within several channels. No investigator has
yet explored this possibility or the possibility that different individuals may
typically attend to different types of information.

2.3 Facial Expression Recognition Studies
The mounting evidence of the importance of emotions in human-human in-

teraction provided the basis for researchers in the engineering and computer
science communities to develop automatic ways for computers to recognize
emotional expression, as a goal towards achieving human-computer intelligent
interaction. The labeling of emotions into different states led most research to
use pattern recognition approaches for recognizing emotions, using different
modalities as inputs to the emotion recognition models. Next we review some
of these works.

Since the early 1970s, Paul Ekman and his colleagues have performed exten-
sive studies of human facial expressions [Ekman, 1994]. They found evidence
to support universality in facial expressions. These “universal facial expres-
sions” are those representing happiness, sadness, anger, fear, surprise, and dis-
gust. They studied facial expressions in different cultures, including preliterate
cultures, and found much commonality in the expression and recognition of
emotions on the face. However, they observed differences in expressions as
well, and proposed that facial expressions are governed by “display rules” in
different social contexts. For example, Japanese subjects and American sub-
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jects showed similar facial expressions while viewing the same stimulus film.
However, in the presence of authorities, the Japanese viewers were more reluc-
tant to show their real expressions. Matsumoto [Matsumoto, 1998] reported the
discovery of a seventh universal facial expression: contempt. Babies seem to
exhibit a wide range of facial expressions without being taught, thus suggesting
that these expressions are innate [Izard, 1994].

Ekman and Friesen [Ekman and Friesen, 1978] developed the Facial Action
Coding System (FACS) to code facial expressions where movements on the
face are described by a set of action units (AUs). Each AU has some related
muscular basis. Each facial expression may be described by a combination of
AUs. Figure 10.1 shows some of the key facial muscles on the face [Faigin,
1990]. The muscle movements (contractions) produce facial expressions. For
example, the corrugator is also known as the “frowning muscle,” zygomatic
major is responsible for smiling, and lavator labii superioris produces “sneer-
ing.” Table 10.1 lists some example action units. Each facial expression may
be described by a combination of AUs. This system of coding facial expres-
sions is done manually by following a set prescribed rules. The inputs are still
images of facial expressions, often at the peak of the expression. This process
is very time-consuming.

Table 10.1. Some example action units [Ekman and Friesen, 1978].

AU number FACS name Muscular basis

1 Inner brow raiser Frontalis, pars medialis
2 Outer brow raiser Frontalis, pars lateralis
5 Upper lid raiser Levator palpebrae superioris
11 Nasolabial furrow Zygomatic minor
12 Lip corner puller Zygomatic major
20 Lip stretcher Risorious

Ekman’s work inspired many researchers to analyze facial expressions by
means of image and video processing. By tracking facial features and measur-
ing the amount of facial movement, they attempt to categorize different facial
expressions. Recent work on facial expression analysis and recognition [Mase,
1991; Ueki et al., 1994; Lanitis et al., 1995b; Black and Yacoob, 1995; Rosen-
blum et al., 1996; Essa and Pentland, 1997; Otsuka and Ohya, 1997a; Lien,
1998; Nefian and Hayes, 1999b; Martinez, 1999; Oliver et al., 2000; Cohen
et al., 2003b; Chen, 2000; Cohen et al., 2003a] has used these “basic expres-
sions” or a subset of them. The recent surveys in the area [Fasel and Luettin,
2003; Pantic and Rothkrantz, 2000; Pantic and Rothkrantz, 2003] provide an
in-depth review of many of the research done in automatic facial expression
recognition in recent years.
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Figure 10.1. Some key facial muscles (adapted from [Faigin, 1990]).

Recent work in computer-assisted quantification of facial expressions did
not start until the 1990s. Mase [Mase, 1991] used optical flow (OF) to recog-
nize facial expressions. He was one of the first to use image processing tech-
niques to recognize facial expressions. Lanitis et al. [Lanitis et al., 1995b] used
a flexible shape and appearance model for image coding, person identification,
pose recovery, gender recognition and facial expression recognition. Black and
Yacoob [Black and Yacoob, 1995] used local parameterized models of image
motion to recover non-rigid motion. Once recovered, these parameters are fed
to a rule-based classifier to recognize the six basic facial expressions. Yacoob
and Davis [Yacoob and Davis, 1996] computed optical flow and used similar
rules to classify the six facial expressions. Rosenblum et al. [Rosenblum et al.,
1996] also computed optical flow of regions on the face, then applied a radial
basis function network to classify expressions. Essa and Pentland [Essa and
Pentland, 1997] also used an optical flow region-based method to recognize
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expressions. Otsuka and Ohya [Otsuka and Ohya, 1997a] first computed op-
tical flow, then computed their 2D Fourier transform coefficients, which were
then used as feature vectors for a hidden Markov model (HMM) to classify ex-
pressions. The trained system was able to recognize one of the six expressions
near realtime (about 10 Hz). Furthermore, they used the tracked motions to
control the facial expression of an animated Kabuki system [Otsuka and Ohya,
1997b]. A similar approach, using different features was used by Lien [Lien,
1998]. Nefian and Hayes [Nefian and Hayes, 1999b] proposed an embedded
HMM approach for face recognition that uses an efficient set of observation
vectors based on the DCT coefficients. Martinez [Martinez, 1999] introduced
an indexing approach based on the identification of frontal face images un-
der different illumination conditions, facial expressions, and occlusions. A
Bayesian approach was used to find the best match between the local obser-
vations and the learned local features model and an HMM was employed to
achieve good recognition even when the new conditions did not correspond
to the conditions previously encountered during the learning phase. Oliver et
al. [Oliver et al., 2000] used lower face tracking to extract mouth shape features
and used them as inputs to an HMM based facial expression recognition sys-
tem (recognizing neutral, happy, sad, and an open mouth). Chen [Chen, 2000]
used a suite of static classifiers to recognize facial expressions, reporting on
both person-dependent and person-independent results. Cohen et al. [Cohen
et al., 2003b] describe classification schemes for facial expression recognition
in two types of settings: dynamic and static classification. The static classifiers
classify a frame in a video to one of the facial expression categories based on
the tracking results of that frame. In this setting, the authors learn the struc-
ture of Bayesian networks classifiers using as input 12 motion units given by
a face tracking system. The authors also use schemes that utilize data that
are unlabeled and cheap to obtain, in conjunction with (expensively) labeled
data [Cohen et al., 2003a; Cohen et al., 2004]. For the dynamic setting, they
used a multi-level HMM classifier that combines the temporal information and
allows not only to perform the classification of a video segment to the corre-
sponding facial expression, as in the previous works on HMM based classifiers,
but also to automatically segment an arbitrary long sequence to the different
expression segments without resorting to heuristic methods of segmentation.

These methods are similar in the general sense that they first extract some
features from the images, then these features are fed into a classification sys-
tem, and the outcome is one of the preselected emotion categories. They differ
mainly in the features extracted from the video images or the processing of
video images to classify emotions. The video processing falls into two broad
categories. The first is “feature-based,” where one tries to detect and track
specific features such as the corners of the mouth, eyebrows, etc.; the other
approach is “region-based” in which facial motions are measured in certain
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regions on the face such as the eye/eyebrow and mouth regions. People have
used different classification algorithms to categorize these emotions. In Table
10.2, we compare several facial expression recognition algorithms. In general,
these algorithms perform well compared to trained human recognition of about
87% as reported by Bassili [Bassili, 1979].

Table 10.2. Comparisons of facial expression recognition algorithms.

Number of Number of
Author Processing Classification Categories Subjects Performance

Mase optical flow kNN 4 1 86%
Black & parametric
Yacoob model rule-based 6 40 92%

Yacoob &
Davis optical flow rule-based 6 32 95%

Rosenblum
et al. optical flow neural networks 2 32 88%

Essa &
Pentland optical flow distance-based 5 8 98%

Otsuka & 2D FT of
Ohya optical flow HMM 6 4 93%

Lanitis appearance
et al. model distance-based 7 - 74%

appearance
Chen model Winnow 6 5 86%

Cohen appearance
et al. model Bayesian networks 7 5+53 83%

In contrast to the classification methods described above, Ueki et al. [Ueki
et al., 1994] extracted AUs and used neural networks (NN) to analyze the emo-
tions, mapping seventeen AUs to two dimensions using an identity mapping
network, and this showed resemblance of the 2D psychological emotion mod-
els. Later on, Morishima [Morishima, 1995] proposed a 3D emotion model in
order to deal with transitions between emotions, and claimed correlation to the
3D psychological emotion model [Schlosberg, 1954].

Another interesting thing to point out is the problem of the commonly con-
fused categories in the six basic expressions. As reported by Ekman, anger and
disgust are commonly confused in judgment studies. Also, fear and surprise
are commonly confused. The reason why these confusions occur is because
they share many similar facial actions[Ekman and Friesen, 1978]. Surprise is
sometimes mistaken for interest, but not the other way around. In the computer
recognition studies, some of these confusions are observed [Black and Yacoob,
1995; Yacoob and Davis, 1996; Cohen et al., 2003b].
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3. Facial Expression Recognition System
Our real time facial expression recognition system is composed of face

tracking algorithm which outputs a vector of motion features of certain regions
of the face. The features are used as inputs to a Bayesian network classifier.
We describe these components in the following section. A snap shot of the
system, with the face tracking and recognition result is shown in Figure 10.2.

Figure 10.2. A snap shot of our realtime facial expression recognition system. On the right
side is a wireframe model overlayed on a face being tracked. On the left side the correct expres-
sion, Angry, is detected (the bars show the relative probability of Angry compared to the other
expressions). The subject shown is from the Cohn-Kanade database [Kanade et al., 2000].

3.1 Face Tracking and Feature Extraction
The face tracking we use in our system is based on a system developed by

Tao and Huang [Tao and Huang, 1998] called the piecewise Bezier volume
deformation (PBVD) tracker.

The face tracker uses a model-based approach where an explicit 3D wire-
frame model of the face is constructed. In the first frame of the image sequence,
landmark facial features such as the eye corners and mouth corners are selected
interactively. The generic face model is then warped to fit the selected facial
features. The face model consists of 16 surface patches embedded in Bezier
volumes. The surface patches defined this way are guaranteed to be continuous
and smooth. The shape of the mesh can be changed by changing the locations
of the control points in the Bezier volume. Before describing the Bezier vol-
ume, we begin with the Bezier curve.
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Given a set of n+1 control points b0,b1, . . . ,bn, the corresponding Bezier
curve (or Bernstein-Bezier curve) is given by

x(u) =
n∑

i=0

biB
n
i (u) =

n∑
i=0

bi

(
n
i

)
ui(1 − u)n−i (10.1)

where the shape of the curve is controlled by the control points bi and u ∈
[0, 1]. As the control points are moved, a new shape is obtained according
to the Bernstein polynomials Bn

i (u) in Equation (10.1). The displacement
of a point on the curve can be described in terms of linear combinations of
displacements of the control points.

The Bezier volume is a straight-forward extension of the Bezier curve and
is defined by the next equation written in matrix form

V = BD, (10.2)

where V is the displacement of the mesh nodes, D is a matrix whose columns
are the control point displacement vectors of the Bezier volume, and B is the
mapping in terms of Bernstein polynomials. In other words, the change in the
shape of the face model can be described in terms of the deformations in D.

Once the model is constructed and fitted, head motion and local deforma-
tions of the facial features such as the eyebrows, eyelids, and mouth can be
tracked. First the 2D image motions are measured using template matching
between frames at different resolutions. Image templates from the previous
frame and from the very first frame are both used for more robust tracking.
The measured 2D image motions are modeled as projections of the true 3D
motions onto the image plane. From the 2D motions of many points on the
mesh, the 3D motion can be estimated by solving an overdetermined system
of equations of the projective motions in the least squared sense. Figure 10.3
shows four frames of tracking result with the meshes overlaid on the face.

The recovered motions are represented in terms of magnitudes of some pre-
defined motion of various facial features. Each feature motion corresponds to
a simple deformation on the face, defined in terms of the Bezier volume con-
trol parameters. We refer to these motions vectors as motion-units (MU’s).
Note that they are similar but not equivalent to Ekman’s AU’s, and are numeric
in nature, representing not only the activation of a facial region, but also the
direction and intensity of the motion. The MU’s used in the face tracker are
shown in Figure 10.4 and are described in Table 10.3.

Each facial expression is modeled as a linear combination of the MU’s:

V = B [D0D1 . . .Dm]

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎣⎢⎢
p0

p1
...

pm

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎦⎥⎥ = BDP (10.3)
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Figure 10.3. The wireframe model overlaid on a face being tracked.

6

11

Figure 10.4. The facial motion measurements.
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Table 10.3. Motion units used in our face tracker.

AU Description

1 vertical movement of the center of upper lip
2 vertical movement of the center of lower lip
3 horizontal movement of left mouth corner
4 vertical movement of left mouth corner
5 horizontal movement of right mouth corner
6 vertical movement of right mouth corner
7 vertical movement of right brow
8 vertical movement of left brow
9 lifting of right cheek
10 lifting of left cheek
11 blinking of right eye
12 blinking of left eye

where each of the Di corresponds to an MU, and the pi are the corresponding
magnitudes (or coefficients) of each deformation. The overall motion of the
head and face is

R(V0 + BDP) + T (10.4)

where R is the 3D rotation matrix, T is the 3D translation matrix, and V0 is
the initial face model.

The MU’s are used as the basic features for the classification scheme de-
scribed in the next sections.

3.2 Bayesian Network Classifiers: Learning the
“Structure” of the Facial Features

The use of Bayesian networks as the classifier for recognizing facial expres-
sions has been first suggested by Chen et al. [Chen, 2000], who used Naive
Bayes classifiers and to recognize the facial expressions from the same MUs.
In [Sebe et al., 2002], we proposed changing the assumption on the distribution
of the features from Gaussian to Cauchy so as to enhance the performance of
the Naive Bayes classifier.

When modeling the describe facial motion features, it is very probable that
the conditional independence assumption of the Naive Bayes classifier is in-
correct. As such, learning the dependencies among the facial motion units
could potentially improve classification performance, and could provide in-
sights as to the "structure" of the face, in terms of strong or weak dependencies
between the different regions of the face, when subjects display facial expres-
sions. With unlabeled data, the analysis of the previous chapters indicates that
learning the structure is even more critical compared to the supervised case. As
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such, we employ the different methods that have been suggested in Chapter 7,
in particular we are interested in using the TAN and SSS algorithms, observing
performance for both the supervised and the semi-supervised cases.

4. Experimental Analysis
In the following experiments we compare the different approaches discussed

in Chapter 7 for facial expression recognition. We initially consider experi-
ments where all the data is labeled and show limited experiments for person
dependent tests and then show experiments for the more general problem of
person independent expression recognition. In the second part of the test, we
investigate the effect of using both labeled and unlabeled data.

We use two different databases, a database collected by Chen and
Huang [Chen, 2000] and the Cohn-Kanade AU coded facial expression
database [Kanade et al., 2000].

The first is a database of subjects that were instructed to display facial ex-
pressions corresponding to the six types of emotions. All the tests of the algo-
rithms are performed on a set of five people, each one displaying six sequences
of each one of the six emotions, starting and ending at the neutral expression.
The data collection method is described in detail in [Chen, 2000]. All the tests
of the algorithms are performed on a set of five people, each one displaying
six sequences of each one of the six emotions, and always coming back to a
neutral state between each emotion sequence.

Each video sequence was used as the input to the face tracking algorithm
described in Section 10.3.1. The video sampling rate was 30 Hz, and a typical
emotion sequence is about 70 samples long (∼2s). Figure 10.5 shows one
frame of each subject.

The data was collected in an open recording scenario, where the person was
asked to display the expression corresponding to the emotion being induced.
This is of course not the ideal way of collecting emotion data. The ideal way
would be using a hidden recording, inducing the emotion through events in the
normal environment of the subject, not in a studio [Sebe et al., 2004]. The
main problem with collecting the data this way is the impracticality of it and
the ethical issue of hidden recording.

The Cohn-Kanade database [Kanade et al., 2000] consists of expression se-
quences of subjects, starting from a Neutral expression and ending in the peak
of the facial expression. There are 104 subjects in the database. Because not
all of the six facial expressions sequences were available to us for some of
the subjects, we used a subset of 53 subjects, for which at least four of the
sequences were available. For each subject there is at most one sequence per
expression with an average of 8 frames for each expression. Figure 10.6 shows
some examples of subjects from the database. A summary of both databases is
presented in Table 10.4.
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(a) Anger (b) Disgust (c) Fear

(d) Happiness (e) Sadness (f) Surprise

(a) Anger (b) Disgust (c) Fear

(d) Happiness (e) Sadness (f) Surprise

(a) Anger (b) Disgust (c) Fear

(d) Happiness (e) Sadness (f) Surprise

Figure 10.5. Examples of images from the video sequences.
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(a) Anger (b) Disgust (c) Fear

(d) Happiness (e) Sadness (f) Surprise

(a) Anger (b) Disgust (c) Fear

(d) Happiness (e) Sadness (f) Surprise

Figure 10.5 (continued). Examples of images from the video sequences.
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Table 10.4. Summary of the databases.

Sequences Sequences per subject average frames
Database Subjects per expression per expression per expression

Our DB 5 30 6 70
Cohn-Kanade DB 53 53 1 8

Figure 10.6. Examples of images from the from the Cohn-Kanade database used in the exper-
iments (printed with permission from the researchers).

We measure the accuracy with respect to the classification result of each
frame, where each frame in the video sequence was manually labeled to one
of the expressions (including neutral). This manual labeling can introduce
some ‘noise’ in our classification because the boundary between Neutral and
the expression of a sequence is not necessarily optimal, and frames near this
boundary might cause confusion between the expression and the Neutral. A
different labeling scheme is to label only some of the frames that are around
the peak of the expression leaving many frames in between unlabeled. We did
not take this approach because a real-time classification system would not have
this information available to it.

4.1 Experimental Results with Labeled Data
We start with experiments using all data as labeled. This can be viewed as

an upper bound on the performance of the classifiers trained with most of the
labels removed. We first perform person dependent tests, also comparing dif-
ferent assumptions other than different structures. Then we perform person in-
dependent tests, with both databases, showing the best performance is attained
with the SSS algorithm. While our focus is on the performance of Bayesian
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network classifiers for this problem, we also compare the results with that of a
artificial Neural network (ANN) based classifiers [Cohen et al., 2003c], so as
to show that the Bayesian network classifiers are not inferior to other types of
classifiers.

4.1.1 Person-dependent Tests

A person-dependent test is first tried. We test for person dependent results
only using the Chen-Huang database since the Cohn-Kanade database has only
one sequence per expression per subject, making it impossible to do person
dependent tests. We train classifiers for each subject, leaving out some of
the subject’s data for testing. Tables 10.5 show the recognition rate of each
subject and the (weighted) average recognition rate of the classifiers for all five
subjects.

Table 10.5. Person-dependent facial expression recognition accuracies (in %).

Subject NB-Gaussian NB-Cauchy NB-discrete TAN SSS ANN

1 80.97 81.69 89.56 92.48 92.95 82.37
2 87.09 84.54 87.77 91.22 90.31 85.23
3 69.06 71.74 85.10 89.62 90.74 81.17
4 82.50 83.05 87.03 91.49 91.77 80.05
5 77.19 79.25 77.87 89.36 87.25 71.78

Average 79.21 79.31 85.58 90.92 90.48 80.81

Table 10.6. Person-dependent confusion matrix using the TAN based classifier.

Emotion Neutral Happy Surprise Anger Disgust Fear Sad
Neutral 93.05 0.61 0.90 1.34 0.84 1.87 1.37
Happy 3.40 93.87 0.41 0.21 0.91 0.33 0.87

Surprise 12.85 0.48 82.64 1.70 0.0 0.63 1.70
Anger 7.98 0.22 0.0 88.44 1.40 1.25 0.71

Disgust 7.51 0.63 0.91 1.05 87.50 1.75 0.65
Fear 14.38 0.36 1.0 1.02 0.0 83.24 0.0
Sad 12.61 0.0 0.31 0.57 0.61 0.0 85.90

We compare the results of five assumptions, both on structure and the dis-
tributions of each feature. We first see that under the Naive-Bayes assumption,
using entropic discretization (NB-discrete) outperforms both the Gaussian and
Cauchy Naive Bayes classifiers. Compared to the three Naive Bayes classifiers,
learning dependencies, either using TAN or using SSS, significantly improves
the classification performance. We do not see any significant differences be-
tween SSS and TAN classifiers because the SSS algorithm could not search
for structures much more complicated than the TAN, due to the limited size
training set (higher complexity classifiers would overfit the training data). We



206 Application:Facial Expression Recognition

Table 10.7. Person-dependent confusion matrix using the SSS based classifier.

Emotion Neutral Happy Surprise Anger Disgust Fear Sad
Neutral 92.27 0.85 0.83 1.38 0.78 2.07 1.82
Happy 5.64 90.76 0.41 0.25 1.09 1.02 0.81

Surprise 14.13 0.48 83.69 1.22 0.0 0.0 0.48
Anger 7.84 0.0 0.0 88.75 1.68 1.00 0.72

Disgust 4.72 0.29 0.62 1.43 91.95 0.81 0.18
Fear 10.04 0.0 1.36 1.00 0.0 87.27 0.33
Sad 13.10 0.0 0.0 0.52 1.43 0.0 84.95

also see that ANN outperform the continuous Naive Bayes classifiers, but are
significantly inferior to TAN and SSS based classifiers.

The confusion matrices for the the TAN and the SSS based classifiers are
presented in Table 10.6 and Table 10.7. The analysis of the confusion between
different emotions shows that for both classifiers, most of the confusion of the
classes is with the Neutral class. This can be attributed to the arbitrary labeling
of each frame in the expression sequence. The first and last few frames of each
sequence are very close to the Neutral expression and thus are more prone to
become confused with it. We also see that most expression do not confuse with
Happy, but more often get confused with each other.

4.1.2 Person-independent Tests

We perform person independent tests by partitioning the data such that the
sequences of some subjects are used as the test sequences and the sequences
of the remaining subjects are used as training sequences. Table 10.8 shows
the recognition rate of the test for all classifiers, using only the discretized
features. The classifier learned with the SSS algorithm outperforms both the
NB and TAN classifiers, while ANN do not perform well compared to all the
others.

Table 10.8. Recognition rate (%) for person-independent test.

NB TAN SSS ANN
Chen-Huang Database 71.78 80.31 83.62 66.44

Cohn-Kandade Database 77.70 80.40 81.80 73.81

Table 10.9 shows the confusion matrices for SSS classifier trained with the
Cohn-Kanade database. We see that Happy, Surprise and Neutral are detected
with high accuracy, and other expressions are confused mostly with Neutral.
Here the differences in the intensity of the expressions among the different
subjects played a role in the confusion among the different expressions.
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Table 10.9. Person-independent average confusion matrix using the SSS classifier (Cohn-
Kanade Database).

Emotion Neutral Happy Surprise Anger Disgust Fear Sad
Neutral 92.39 1.84 0.79 2.10 0.00 0.52 2.36
Happy 4.14 84.14 1.38 1.38 2.07 6.21 0.69

Surprise 3.19 0.00 91.49 0.00 0.00 1.06 4.26
Anger 13.46 1.92 0.96 71.15 7.69 0.96 3.85

Disgust 22.81 1.75 0.00 8.77 64.91 1.75 0.00
Fear 18.18 10.10 7.07 0.00 1.01 58.59 5.05
Sad 13.33 1.67 5.00 5.00 0.00 0.83 74.17

It is also informative to look at the structures that were learned from data.
Figure 10.7 shows two learned tree structure of the features (our Motion Units)
one learned using the Cohn-Kanade database and the second from the Chen-
Huang database. The arrows are from parents to children MUs. In both tree
structures we see that the algorithm produced structures in which the bottom
half of the face is almost disjoint from the top portion, except for a link between
MU9 and MU8 in the first and a weak link between MU4 and MU11 in the
second.

55

(a) (b)

Figure 10.7. Two learned TAN structures for the facial features, (a) using the Cohn-Kanade
database, (b) using the Chen-Huang database.

4.2 Experiments with Labeled and Unlabeled Data
We perform person-independent experiments with labeled and unlabeled

data. We first partition the data to a training set and test set (2/3 training 1/3 for
testing), choose by random a portion of the training set and remove the labels
(see Table 10.10). This procedure ensures that the distribution of the labeled
and the unlabeled sets are the same.
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Table 10.10. Datasets used for facial expression recognition with labeled and unlabeled data.

Dataset Train Test
# labeled # unlabeled

Cohn-Kanade 200 2980 1000
Chen-Huang 300 11982 3555

We then train Naive Bayes and TAN classifiers, using just the labeled part
of the training data and the combination of labeled and unlabeled data. We use
the SSS and EM-CBL1 algorithms to train a classifier using both labeled and
unlabeled data (we do not search for the structure with just the labeled part
because it is too small for performing a full structure search).

Table 10.11 shows the results of the experiments. We see that with NB
and TAN, when using 200 and 300 labeled samples, adding the unlabeled data
degrades the performance of the classifiers, and we would have been better off
not using the unlabeled data. We also see that EM-CBL1 performs poorly in
both cases. Using the SSS algorithm, we are able to improve the results and
utilize the unlabeled data to achieve performance which is higher than using
just the labeled data with NB and TAN. The fact that the performance is lower
than in the case when all the training set was labeled (about 75% compared
to over 80%) implies that the relative value of labeled data is higher than of
unlabeled data, as was shown by Castelli [Castelli, 1994]. However, had there
been more unlabeled data, the performance would be expected to improve.

Table 10.11. Classification results for facial expression recognition with labeled and unlabeled
data.

Dataset NB-L EM-NB TAN-L EM-TAN EM-CBL1 SSS

Cohn-Kanade 272.5±1.4 69.1±1.4 72.9±1.4 69.3±1.4 66.2±1.5 74.8±1.4
Chen-Huang 71.3±0.8 58.5±0.8 72.5±0.7 62.9±0.8 65.9±0.8 75.0±0.7

5. Discussion
We showed that the TAN and SSS algorithms can be used to enhance the

performance of facial expression recognition over the simple Naive Bayes clas-
sifier for the person independent and dependent approaches.

Learning the structure of the Bayesian networks also showed that there is
a weak dependency between the motion in the lower part of the face and
the upper face, an observation that agrees with physiological intuition. The
experiments also showed that allowing for learning of the dependencies also
enhanced the classification performance with unlabeled data, when using the
classification driven SSS algorithm. Such a result suggests that it is not enough
to learn first order dependencies between the motion units (as in the case of
TAN), rather, more complex dependencies are necessary to truly model the
dependencies between facial motions.
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Are the recognition rates sufficient for real world use? We think that it
depends upon the particular application. In the case of image and video re-
trieval from large databases, the current recognition rates could aid in finding
the right image or video by giving additional options for the queries. For future
research, the integration of multiple modalities such as voice analysis and con-
text would be expected to improve the recognition rates and eventually improve
the computer’s understanding of human emotional states. Voice and gestures
are widely believed to play an important role as well [Chen, 2000; De Silva
et al., 1997], and physiological states such as heart beat and skin conductivity
are being suggested [Cacioppo and Tassinary, 1990]. People also use con-
text as an indicator of the emotional state of a person. The advantage of using
Bayesian network classifiers is that they provide a good framework of fusing
different modalities in an intuitive and coherent manner. This work is there-
fore a first step towards building a more comprehensive system of recognizing
human’s affective state by computers.



Chapter 11

APPLICATION:
BAYESIAN NETWORK CLASSIFIERS FOR FACE
DETECTION

Images containing faces are essential to intelligent vision-based human
computer interaction. To buld fully automated systems that analyze the infor-
mation contained in face images, robust and efficient face detection algorithms
are required. Among the face detection methods, the ones based on learning
algorithms have attracted much attention recently and have demonstrated ex-
cellent results.

This chapter presents a discussion on semi-supervised learning of proba-
bilistic mixture model classifiers for face detection. Based on our complete the-
oretical analysis of semi-supervised learning using maximum likelihood pre-
sented in Chapter 4 we discuss the possibility of structure learning of Bayesian
networks for face detection. We show that learning the structure of Bayesian
networks classifiers enables learning of good classifiers for face detection with
a small labeled set and a large unlabeled set.

1. Introduction
Many of the recent applications designed for human-computer intelligent

interaction applications have used the human face as an input. Systems that
perform face tracking for various applications, facial expression recognition
and pose estimation of faces all rely on detection of human faces in the video
frames [Pentland, 2000]. The rapidly expanding research in face processing is
based on the premise that information about user’s identity, state, and intend
can be extracted from images and that computers can react accordingly, e.g.,
by observing a person’s facial expression. In the last years, face and facial
expression recognition have attracted much attention despite the fact that they
have been studied for more than 20 years by psychophysicists, neuroscientists,
and engineers. Many research demonstrations and commercial applications
have been developed from these efforts.
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Given an arbitrary image, the goal of face detection is to automatically lo-
cate a human face in an image or video, if it is present. Face detection in a
general setting is a challenging problem due to the variability in scale, loca-
tion, orientation (up-right, rotated), and pose (frontal, profile). Facial expres-
sion, occlusion, and lighting conditions also change the overall apprearance of
faces. Yang et al. [Yang et al., 2002] summarize in their comprehensive survey
the challenges associated with face detection:

Pose. The images of a face vary due to the relative camera-face pose
(frontal, 45 degree, profile, upside down), and some facial features (e.g.,
an eye or the nose) may become partially or wholly occluded.

Presence or absence of structural components. Facial features such as
beards, mustaches, and glasses may or may not be present and there is a
great deal of variability among these components including shape, color,
and size.

Facial expression. The appearance of faces is directly affected by the facial
expression of the persons.

Occlusion. Faces may be partially occluded by other objects. In an image
with a group of people, some faces may partially occlude other faces.

Image orientation. Face images directly vary for different rotations about
the camera’s optical axis.

Imaging conditions. When the image is formed, factors such as lighting
(spectra, source distribution and intensity) and camera characteristics (sen-
sor response, lenses) affect the appearance of a face.

There are many closely related problems of face detection. Face localiza-
tion aims to determine the image position of a single face; this is a simplified
detection problem with the assumption that an input image contains only one
face [Lam and Yan, 1994; Moghaddam and Pentland, 1997]. The goal of facial
feature detection is to detect the presence and location of features, such as eyes,
nose, nostrils, eyebrow, mouth, lips, ears, etc., with the assumption that there is
only one face in an image [Craw et al., 1992; Graf et al., 1995]. Face recogni-
tion or face identification compares an input image (probe) against a database
(gallery) and reports a match, if any [Chellappa et al., 1995; Samal and Iyen-
gar, 1992; Turk and Pentland, 1991]. The purpose of face authentication is to
verify the claim of the identity of an individual in an input image [Tefas et al.,
1998], while face tracking methods continuously estimate the location and pos-
sibly the orientation of a face in an image sequence in real time [Edwards et al.,
1998; Darell et al., 2000; Crowley and Berard, 1997]. Facial expression recog-
nition concerns identifying the affective states (happy, sad, disgusted, etc.) of
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humans [Pantic and Rothkrantz, 2000; Pantic and Rothkrantz, 2003; Fasel and
Luettin, 2003]. Evidently, face detection is the first step in any automated sys-
tem which solves the above problems. In this chapter, we do not present a
complete face detection system. We limit ourselves to present a face detection
methodology that can use both labeled and unlabeled data and which can easily
be aplied to other face detection methods.

To solve the problem of face detection, four main approaches can be taken:

Knowledge-based methods. These rule-based methods encode human
knowledge of what constitutes a typical face. Usually, the rules capture the
relationships between facial features. These methods are designed mainly
for face localization.

Feature invariant approaches. These algorithms aim to find structural
features that exist even when the pose, viewpoint, or lighting conditions
vary, and then use the these to locate faces. These methods are designed
mainly for face localization.

Template matching methods. Several standard patterns of a face are
stored to describe the face as a whole or the facial features separately. The
correlations between an input image and the stored patterns are computed
for detection. These methods have been used for both face localization and
detection.

Appearance-based methods. In contrast to template matching, the mod-
els (or templates) are learned from a set of training images which should
capture the representative variability of facial appearance. These learned
models are then used for detection. These methods are designed mainly for
face detection.

2. Related Work
Table 11.1 summarizes algorithms and representative works for face de-

tection in a single image within the four categories presented in the previous
section [Yang et al., 2002]. In this chapter, we focus on the appearance based
methods.

There have been numerous appearance based approaches. We mention a few
from recent years and refer to the detailed reviews of Yang et al. [Yang et al.,
2002] and Hjelmas and Low [Hjelmas and Low, 2001] for further details.

While in template matching methods the templates are predefined by ex-
perts, the templates in appearance- based methods are learned from examples
in images. In general, appearance-based methods rely on techniques from sta-
tistical analysis and machine learning to find the relevant characteristics of
face and nonface images. The learned characteristics are in the form of dis-
tribution models or discriminant functions that are consequently used for face
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Table 11.1. Categorization of methods for face detection in a single image.

Approach Representative works
Knowledge-based

Multiresolution rule-based method
[Yang and Huang, 1994]

Feature invariant
- Facial features Grouping of edges

[Leung et al., 1995; Yow and Cipolla, 1997]
- Texture Space Gray-Level Dependence matrix (SGLD) of

face patterns [Dai and Nakano, 1996]
- Skin Color Mixture of Gaussian

[Yang and Waibel, 1996; McKenna et al., 1998]
- Multiple Features Integration of skin color, size, and shape

[Kjeldsen and Kender, 1996]
Template matching

- Predefined face templates Shape template
[Craw et al., 1992]

- Deformable templates Active Shape Model (ASM)
[Lanitis et al., 1995a]

Appearance-based method
- Eigenface Eigenvector decomposition and clustering

[Turk and Pentland, 1991]
- Distribution-based Gaussian distribution and multilayer perceptron

[Sung and Poggio, 1998]
- Neural Network Ensemble of neural networks and arbitration

schemes [Rowley et al., 1998a; Kouzani, 2003]
- Support Vector Machine (SVM) SVM with polynomial kernel

[Osuna et al., 1997]
- Naive Bayes classifier Joint statistics of local appearance and position

[Schneiderman and Kanade, 1998]
- Hidden Markov Model (HMM) Higher order statistics with HMM

[Rajagalopan et al., 1998]
- Information-theoretical approach Kullback relative information

[Colmenarez and Huang, 1997; Lew, 1996]

detection. Meanwhile, dimensionality reduction is usually carried out for the
sake of computation efficiency and detection efficacy. Many appearance-based
methods can be understood in a probabilistic framework. An image or feature
vector derived from an image is viewed as a random variable x, and this ran-
dom variable is characterized for faces and nonfaces by the class-conditional
density functions p(x|face|| ) and p(x|nonface). Bayesian classification or max-
imum likelihood can be used to classify a candidate image location as face or
nonface. Unfortunately, a straightforward implementation of Bayesian classifi-
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cation is infeasible due to the high dimensionality of x, and because p(x|face|| )
and p(x|nonface) are multimodal. Another problem is the fact that it is not
yet understood if there are natural parameterized forms for p(x|face|| ) and
p(x|nonface). As a consequence, much of the work in an appearance-based
method concerns empirically validated parametric and nonpara-metric approx-
imations to p(x|face|| ) and p(x|nonface).

Another approach in appearance-based methods is to find a discriminant
function (i.e., decision surface, separating hyperplane, threshold function) be-
tween face and nonface classes. Conventionally, image patterns are projected
to a lower dimensional space and then a discriminant function is formed (usu-
ally based on distance metrics) for classification [Turk and Pentland, 1991],
or a nonlinear decision surface can be formed using multilayer neural net-
works [Rowley et al., 1998a; Kouzani, 2003]. Recently, support vector ma-
chines and other kernel methods have been proposed. These methods implic-
itly project patterns to a higher dimensional space and then form a decision
surface between the projected face and nonface patterns [Osuna et al., 1997].

Turk and Pentland applied principal component analysis to face recogni-
tion and detection [Turk and Pentland, 1991]. Similar to [Kirby and Sirovich,
1990], principal component analysis on a training set of face images is per-
formed to generate eigenfaces which span a subspace (called the face space)
of the image space. Images of faces are projected onto the subspace and clus-
tered. Similarly, nonface training images are projected onto the same subspace
and clustered. The idea is that the images of faces do not change radically
when projected onto the face space, while the projection of nonface images
appear quite different. To detect the presence of a face in a scene, the distance
between an image region and the face space is computed for all locations in
the image. The distance from face space is used as a measure of faceness, and
the result of calculating the distance from face space is a face map. A face can
then be detected from the local minima of the face map.

Sung and Poggio [Sung and Poggio, 1998] developed a distribution-based
system for face detection which demonstrated how the distributions of image
patterns from one object class can be learned from positive and negative ex-
amples (i.e., images) of that class. Their system consists of two components,
distribution-based models for face/nonface patterns and a multilayer percep-
tron classifier. A probabilistic visual learning method based on density esti-
mation in a high-dimensional space using an eigenspace decomposition was
developed by Moghaddam and Pentland [Moghaddam and Pentland, 1997].
Principal component analysis (PCA) is used to define the subspace best repre-
senting a set of face patterns. This method decomposes the vector space into
two mutually exclusive and complementary subspaces: the principal subspace
(or feature space) and its orthogonal complement. Therefore, the target den-
sity is decomposed into two components: the density in the principal subspace
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(spanned by the principal components) and its orthogonal complement (which
is discarded in standard PCA). A multivariate Gaussian and a mixture of Gaus-
sians are used to learn the statistics of the local features of a face. These proba-
bility densities are then used for object detection based on maximum likelihood
estimation.

Rowley et al. [Rowley et al., 1998a] and Kouzani [Kouzani, 2003] used
Neural networks to detect faces in images by training from a corpus of face
and nonface images. A multilayer neural network is used to learn the face
and nonface patterns from face/nonface images (i.e., the intensities and spatial
relationships of pixels). One limitation of the method of Rowley et al. [Row-
ley et al., 1998a] is that it can only detect upright, frontal faces. To address
this problem, Rowley et al. [Rowley et al., 1998b] extended this method to de-
tect rotated faces using a router network which processes each input window to
determine the possible face orientation and then rotates the window to a canon-
ical orientation. However, the new system has a lower detection rate on upright
faces than the upright detector. Nevertheless, the system is able to detect 76.9
percent of faces over two large test sets with a small number of false positives.

In contrast to the methods in [Osuna et al., 1997] and [Sung and Pog-
gio, 1998] which model the global appearance of a face, Schneiderman and
Kanade [Schneiderman and Kanade, 1998] described a naive Bayes classifier
to estimate the joint probability of local appearance and position of face pat-
terns (subregions of the face) at multiple resolutions. They emphasize local
appearance because some local patterns of an object are more unique than oth-
ers; the intensity patterns around the eyes are much more distinctive than the
pattern found around the cheeks. There are two reasons for using a naive Bayes
classifier (i.e., no statistical dependency between the subregions). First, it pro-
vides better estimation of the conditional density functions of these subregions.
Second, a naive Bayes classifier provides a functional form of the posterior
probability to capture the joint statistics of local appearance and position on
the object. At each scale, a face image is decomposed into four rectangular
subregions. These subregions are then projected to a lower dimensional space
using PCA and quantized into a finite set of patterns, and the statistics of each
projected subregion are estimated from the projected samples to encode local
appearance. Under this formulation, their method decides that a face is present
when the likelihood ratio is larger than the ratio of prior probabilities.

Yang et al. [Yang et al., 2000] used SNoW based classifiers to learn the
face and non-face discrimination boundary on natural face images. They de-
tect faces with different features and expressions, in different poses, and under
different lighting conditions.

Colmenarez and Huang [Colmenarez and Huang, 1997] used maximum en-
tropic discrimination between faces and non-faces to perform maximum like-
lihood classification, which was used for a real time face tracking system. Im-
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ages from the training set of each class (i.e., face and nonface class) are ana-
lyzed as observations of a random process and are characterized by two prob-
ability functions. The authors used a family of discrete Markov processes to
model the face and background patterns and to estimate the probability model.
The learning process is converted into an optimization problem to select the
Markov process that maximizes the information-based discrimination between
the two classes. The likelihood ratio is computed using the trained probability
model and used to detect the faces. Wang et al. [Wang et al., 2002] learned a
minimum spanning weighted tree for learning pairwise dependencies graphs of
facial pixels, followed by a discriminant projection to reduce complexity. Viola
and Jones [Viola and Jones, 2004] used boosting and a cascade of classifiers
for face detection.

3. Applying Bayesian Network Classifiers to Face
Detection

Among the different works mentioned above, those of Colmenarez and
Huang [Colmenarez and Huang, 1997] and Wang et al. [Wang et al., 2002]
are more related to the Bayesian network classification methods. Both learn
some ‘structure’ between the facial pixels and combine them to a probabilistic
classification rule. Both use the entropy between the different pixels to learn
pairwise dependencies.

Face detection provides interesting challenges to the underlying pattern clas-
sification and learning techniques. When a raw or filtered image is considered
as an input to a pattern classifier, the dimesion of the space is extremely large
(i.e., the number of pixels in the normalized training images). The classes of
face and non-face images are decidely characterized by multimodal distribu-
tion functions and effective decision boundaries are likely to be non-linear in
the image space. To be effective, the classifiers must be able to extrapolate
from a modest number of training samples.

In the following, we propose to use Bayesian network classifiers, with the
image pixels of a predefined window size as the features in the Bayesian net-
work. We propose to use the TAN classifier to learn dependencies between
the features, and show that using the stochastic structure search algorithm pro-
vides further enhancement of the classification result. The aim of this work
is to demonstrate the ability of Bayesian network classifiers to learn appear-
ance based face models for the face detection problem with both labeled and
unlabeled data.

Our approach in detecting faces is an appearance based approach, where the
intensity of image pixels serve as the features for the classifier. In a natural
image, faces can appear at different scales, rotations and location. For learning
and defining the Bayesian network classifiers, we must look at fixed size win-



218 Application:Bayesian Network Classifiers for Face Detection

dows and learn how a face appears in such as windows, where we assume that
the face appears in most of the window’s pixels.

The goal of the classifier would be to determine if the pixels in a fixed size
window are those of a face or non-face. While faces are a well defined concept,
and have a relatively regular appearance, it is harder to characterize non-faces.
We therefore model the pixel intensities as discrete random variables, as it
would be impossible to define a parametric probability distribution function
(pdf) for non-face images. For 8-bit representation of pixel intensity, each pixel
has 256 values. Clearly, if all these values are used for the classifier, the number
of parameters of the joint distribution is too large for learning dependencies
between the pixels (as in the case of TAN classifiers). Therefore, there is a need
to reduce the number of values representing pixel intensity. Colmenarez and
Huang [Colmenarez and Huang, 1997] used 4 values per pixel using fixed and
equal bin sizes. We use non-uniform discretization using the class conditional
entropy as the mean to bin the 256 values to a smaller number. We use the
MLC++ software for that purpose as described in [Dougherty et al., 1995].

Note that our methodology can be extended to other face detection methods
which use different features. The complexity of our method is O(n), where n
is the number of features (pixels in our case) considered in each image window.

4. Experiments
We test the different approaches described in Chapter 7, with both labeled

data and unlabeled data. For training the classifier we used a dataset consist-
ing of 2,429 faces and 10,000 non faces obtained from the MIT CBCL Face
database #1 [MITFaceDB, 2000]. Examples of face images from the database
are presented in Figure 11.1. Each face image is cropped and resampled to a
19×19 window, thus we have a classifier with 361 features. We also randomly
rotate and translate the face images to create a training set of 10,000 face im-
ages. In addition we have available 10,000 non-face images. We leave out
1, 000 images (faces and non-faces) for testing and train the Bayesian network
classifier on the remaining 19,000. In all the experiments we learn a Naive
Bayes, a TAN, and a general generative Bayesian network classifier, the latter
using the SSS algorithm.

To compare the results of the classifiers, we use the receiving operating
characteristic (ROC) curves. The ROC curves show, under different classifi-
cation thresholds, ranging from 0 to 1, the probability of detecting a face in a
face image, PDP = P (Ĉ = face|C = face), against the probability of falsely
detecting a face in a non-face image,PFDP = P (Ĉ = face|C �=�� face).

We first learn using all the training data being labeled (that is 19,000 labeled
images). Figure 11.2 shows the resultant ROC curve for this case. The classi-
fier learned with the SSS algorithm outperforms both TAN and NB classifiers,
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Figure 11.1. Randomly selected face examples.
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Figure 11.2. ROC curves showing detection rates of faces compared to false detection of faces
of the different classifiers (NB, TAN, SSS) when all the data are labeled (no unlabeled data).
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Figure 11.3. ROC curves showing detection rates of faces compared to false detection of faces
with 97.5% unlabeled data for different classifiers: SSS, Naive Bayes learned with labeled data
only (NB-L) and with labeled and unlabeled data (EM-NB), and TAN learned with labeled data
only (TAN-L) and with labeled and unlabeled data (EM-TAN).

and all perform quite well, achieving about 98% detection rates with a low rate
of false alarm.

Next, we remove the labels of some of the training data and train the clas-
sifiers. In the first case presented in Figure 11.3, we removed the labeles of
97.5% of the training data (leaving only 475 labeled images) and train the
classifiers. We see that the NB classifier using both labeled and unlabeled data
(EM-NB) performs very poorly. The TAN based only on the 475 labeled im-
ages (TAN-L) and the TAN based on the labeled and unlabeled images (EM-
TAN) are close in performance, thus there was no significant degradation of
performance when adding the unlabeled data. The classifier based on the EM-
CBL1 algorithm has the fastest increase in detection rate compared to false
alarms, but at some point the increase becomes slow which leads to an inferion
performance compared to the classifier trained with SSS.

Figure 11.4 shows the ROC curve with only 250 labeled data used (the labels
of about 98.7% of the training data were removed). Again, NB with both
labeled and unlabeled data (EM-NB) performs poorly, while SSS outperforms
the other classifiers with no great reduction of performance compared to the
ROC curves presented in Figure 11.3. Note that the ROC curves in Figures 11.4
and 11.3 corresponding to the classifiers trained only with a small amount of
labeled data are significantly lower than the ones in Figure 11.2. However,
when both labeled and unlabeled data are used the curves are only marginally
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Figure 11.4.F ROC curves showing detection rates of faces compared to false detection of faceso
withw 98.7% unlabeled data for different classifiers: SSS, Naive Bayes learned with labeled datas
only (NB-L) and with labeled and unlabeled data (EM-NB), and TAN learned with labeled datal (NB L) d ith l b l d d l b l d
only (TAN-L) and with labeled and unlabeled data (EM-TAN).

lower. The experiment shows that using structure search, the unlabeled data
was utilized successfully to achieve a classifier almost as good as if all the data
was labeled.

In Table 11.2 we summarize the results obtained for different algorithms
and in the presence of increasing number of unlabeled data. We fixed the false
alarm to 1%, 5%, and 10% and we computed the detection rates. Note that the
detection rates for NB are lower than the ones obtained for the other detectors.
For benchmarking we implemented a SVM classifier (we used the implemen-
tation of Osuna et al. [Osuna et al., 1997]). Note that this classifier starts off
very good, but does not improve performance. Overall, the results obtained
with SSS are the best. We see that even in the most difficult cases, there was
sufficient amount of unlabeled data to achieve almost the same performance as
with a large sized labeled dataset.

We also tested our system on the CMU test set [Rowley et al., 1998a] con-
sisting of 130 images with a total of 507 frontal faces. The results are summa-
rized in Table 11.3. Note that we obtained comparable results with the results
obtained by Viola and Jones [Viola and Jones, 2004] and better than the results
of Rowley et al. [Rowley et al., 1998a]. Examples of the detection results on
some of the images of the CMU test are presented in Figure 11.5. We no-
ticed similar failure modes as Viola and Jones [Viola and Jones, 2004]. Since,
the face detector was trained only on frontal faces our system failes to detect
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Table 11.2. Detection rates (%) for various numbers of false positives.

����� ��� ��� ��� ��� ��� ��� ��� ��� ���Detector
False positives

1% 5% 10%

19,000 labeled 74.31 89.21 92.72
475 labeled 68.37 86.55 89.45

475 labeled + 18,525 unlabeled 66.05 85.73 86.98
250 labeled 65.59 84.13 87.67

NB

250 labeled + 18,750 unlabeled 65.15 83.81 86.07
19,000 labeled 91.82 96.42 99.11

475 labeled 86.59 90.84 94.67
475 labeled + 18,525 unlabeled 85.77 90.87 94.21

250 labeled 75.37 87.97 92.56
TAN

250 labeled + 18,750 unlabeled 77.19 89.08 91.42
19,000 labeled 90.27 98.26 99.87

475 labeled + 18,525 unlabeled 88.66 96.89 98.77SSS
250 labeled + 18,750 unlabeled 86.64 95.29 97.93

19,000 labeled 87.78 93.84 94.14
475 labeled 82.61 89.66 91.12SVM
250 labeled 77.64 87.17 89.16

faces if they have a significant rotation out of the plane (toward a profile view).
The detector has also problems with the images in which the faces appear dark
and the background is relatively light. Inevitably, we also detect false positive
especially in some texture regions.

Table 11.3. Detection rates (%) for various numbers of false positives on the CMU test set.

����� ��� ��� ��� ��� ��� ��� ��� ��� ���Detector
False positives

10% 20%

19,000 labeled 91.7 92.84
475 labeled + 18,525 unlabeled 89.67 91.03SSS
250 labeled + 18,750 unlabeled 86.64 89.17

Viola-Jones [Viola and Jones, 2004] 92.1 93.2
Rowley et al. [Rowley et al., 1998a] - 89.2

5. Discussion
In this chapter, we suggested a methodology for learning to detect faces us-

ing both labeled and unlabeled data samples. Consequently, we applied the
algorithms presented in Chapter 7 for learning the structure of a Bayesian net-
work classifier to detect faces in images. We humbly note that while finding
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Figure 11.5. Output of the system on some images of the CMU test using the SSS classifier
learned with 19,000 labeled data. MFs represents the number of missed faces and FDs is the
number of false detections.

a good classifier is a major part of any face detection system, there are many
more components that need to be designed for such a system to work on nat-
ural images (e.g., ability to detect at multi-scales, highly varying illumination,
large rotations of faces and partial occlusions).

Another issue which was artificially solved in our case is the problem of
determining the prior of the class variable. Can we really define the prior prob-
ability of a face being in an image? Probably not. However, we need to define,
even artificially, such prior probability if we want to use maximum a-posteriori
(MAP) classification. Of course, the prior probability will be determined by
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our training set, but the assumptions that the samples are randomly sampled
from the joint distribution does not hold. We fully control the ratio between
face and non-face images. A solution to this problem is done by the use of the
Neiman-Pearson ratio - we determine the allowable false alarm rate, and we
can set the classification threshold different than 1/2 so we achieve this rate.
A good classifier will achieve a good face detection rate. Our experiments do
show that the ROC curve of our classifiers can achieve high detection of faces
with relatively low false alarms (albeit not zero).
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